基于核的元胞自动机的城市模拟

Xiaoping Liu, Xia Li, Bin Ai, Shaokun Wu, Tao Liu
{"title":"基于核的元胞自动机的城市模拟","authors":"Xiaoping Liu, Xia Li, Bin Ai, Shaokun Wu, Tao Liu","doi":"10.1109/ICNC.2007.456","DOIUrl":null,"url":null,"abstract":"Cellular automata (CA) can be used to simulate complex urban systems. Calibration of CA is essential for producing realistic urban patterns. A common calibration procedure is based on linear regression methods, such as multicriteria evaluation. This paper proposes a new method to acquire nonlinear transition rules of CA by using the techniques of kernel-based learning machines. The kernel-based approach transforms complex nonlinear problems to simple linear problems through the mapping on an implicit high-dimensional feature space for extracting transition rules. This method has been applied to the simulation of urban expansion in the fast growing city, Guangzhou. Comparisons indicate that more reliable simulation results can be generated by using this kernel-based method.","PeriodicalId":250881,"journal":{"name":"Third International Conference on Natural Computation (ICNC 2007)","volume":"16 S1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Kernel-Based Cellular Automata for Urban Simulation\",\"authors\":\"Xiaoping Liu, Xia Li, Bin Ai, Shaokun Wu, Tao Liu\",\"doi\":\"10.1109/ICNC.2007.456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cellular automata (CA) can be used to simulate complex urban systems. Calibration of CA is essential for producing realistic urban patterns. A common calibration procedure is based on linear regression methods, such as multicriteria evaluation. This paper proposes a new method to acquire nonlinear transition rules of CA by using the techniques of kernel-based learning machines. The kernel-based approach transforms complex nonlinear problems to simple linear problems through the mapping on an implicit high-dimensional feature space for extracting transition rules. This method has been applied to the simulation of urban expansion in the fast growing city, Guangzhou. Comparisons indicate that more reliable simulation results can be generated by using this kernel-based method.\",\"PeriodicalId\":250881,\"journal\":{\"name\":\"Third International Conference on Natural Computation (ICNC 2007)\",\"volume\":\"16 S1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Third International Conference on Natural Computation (ICNC 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNC.2007.456\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third International Conference on Natural Computation (ICNC 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2007.456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

元胞自动机(CA)可以用来模拟复杂的城市系统。校正CA对于生成真实的城市格局至关重要。一个常见的校准程序是基于线性回归方法,如多准则评估。本文提出了一种利用核学习机技术获取CA非线性转移规则的新方法。该方法通过在隐式高维特征空间上的映射来提取转换规则,将复杂的非线性问题转化为简单的线性问题。该方法已应用于快速发展城市广州的城市扩张模拟。对比表明,采用该方法可以得到更可靠的仿真结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Kernel-Based Cellular Automata for Urban Simulation
Cellular automata (CA) can be used to simulate complex urban systems. Calibration of CA is essential for producing realistic urban patterns. A common calibration procedure is based on linear regression methods, such as multicriteria evaluation. This paper proposes a new method to acquire nonlinear transition rules of CA by using the techniques of kernel-based learning machines. The kernel-based approach transforms complex nonlinear problems to simple linear problems through the mapping on an implicit high-dimensional feature space for extracting transition rules. This method has been applied to the simulation of urban expansion in the fast growing city, Guangzhou. Comparisons indicate that more reliable simulation results can be generated by using this kernel-based method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Emotional Evaluation of Color Patterns Based on Rough Sets Uniqueness of Linear Combinations of Ridge Functions PID Neural Network Temperature Control System in Plastic Injecting-moulding Machine The Study of Membrane Fouling Modeling Method Based on Wavelet Neural Network for Sewage Treatment Membrane Bioreactor Simulation and Research of the PCB Vias Effects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1