{"title":"基于不同视点的无人机控制信息人群界面可用性评价","authors":"C. Recchiuto, A. Sgorbissa, R. Zaccaria","doi":"10.1109/ROMAN.2015.7333638","DOIUrl":null,"url":null,"abstract":"A common way to organize a high number of robots, both when moving autonomously and when controlled by a human operator, is to let them move in formation. This is a principle that takes inspiration from the nature, that maximizes the possibility of monitoring the environment and therefore of anticipating risks and finding targets. In robotics, alongside these reasons, the organization of a robot team in a formation allows a human operator to deal with a high number of agents in a simpler way, moving the swarm as a single entity. In this context, the typology of visual feedback is fundamental for a correct situational awareness, but in common practice having an optimal camera configuration is not always possible. Usually human operators use cameras on board the multirotors, with an egocentric point of view, while it is known that in mobile robotics overall awareness and pattern recognition are optimized by exocentric views. In this article we present an analysis of the performance achieved by human operators controlling a swarm of UAVs in formation, accomplishing different tasks and using different point of views. The control architecture is implemented in a ROS framework and interfaced with a 3D simulation environment. Experimental tests show a degradation of performance while using egocentric cameras with respect of an exocentric point of view, although cameras on board the robots allow to satisfactorily accomplish simple tasks.","PeriodicalId":119467,"journal":{"name":"2015 24th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Usability evaluation with different viewpoints of a Human-Swarm interface for UAVs control in formation\",\"authors\":\"C. Recchiuto, A. Sgorbissa, R. Zaccaria\",\"doi\":\"10.1109/ROMAN.2015.7333638\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A common way to organize a high number of robots, both when moving autonomously and when controlled by a human operator, is to let them move in formation. This is a principle that takes inspiration from the nature, that maximizes the possibility of monitoring the environment and therefore of anticipating risks and finding targets. In robotics, alongside these reasons, the organization of a robot team in a formation allows a human operator to deal with a high number of agents in a simpler way, moving the swarm as a single entity. In this context, the typology of visual feedback is fundamental for a correct situational awareness, but in common practice having an optimal camera configuration is not always possible. Usually human operators use cameras on board the multirotors, with an egocentric point of view, while it is known that in mobile robotics overall awareness and pattern recognition are optimized by exocentric views. In this article we present an analysis of the performance achieved by human operators controlling a swarm of UAVs in formation, accomplishing different tasks and using different point of views. The control architecture is implemented in a ROS framework and interfaced with a 3D simulation environment. Experimental tests show a degradation of performance while using egocentric cameras with respect of an exocentric point of view, although cameras on board the robots allow to satisfactorily accomplish simple tasks.\",\"PeriodicalId\":119467,\"journal\":{\"name\":\"2015 24th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 24th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROMAN.2015.7333638\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 24th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROMAN.2015.7333638","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Usability evaluation with different viewpoints of a Human-Swarm interface for UAVs control in formation
A common way to organize a high number of robots, both when moving autonomously and when controlled by a human operator, is to let them move in formation. This is a principle that takes inspiration from the nature, that maximizes the possibility of monitoring the environment and therefore of anticipating risks and finding targets. In robotics, alongside these reasons, the organization of a robot team in a formation allows a human operator to deal with a high number of agents in a simpler way, moving the swarm as a single entity. In this context, the typology of visual feedback is fundamental for a correct situational awareness, but in common practice having an optimal camera configuration is not always possible. Usually human operators use cameras on board the multirotors, with an egocentric point of view, while it is known that in mobile robotics overall awareness and pattern recognition are optimized by exocentric views. In this article we present an analysis of the performance achieved by human operators controlling a swarm of UAVs in formation, accomplishing different tasks and using different point of views. The control architecture is implemented in a ROS framework and interfaced with a 3D simulation environment. Experimental tests show a degradation of performance while using egocentric cameras with respect of an exocentric point of view, although cameras on board the robots allow to satisfactorily accomplish simple tasks.