{"title":"基于神经网络的火灾探测智能电子鼻系统","authors":"T. Fujinaka, M. Yoshioka, S. Omatu","doi":"10.1109/ADVCOMP.2008.47","DOIUrl":null,"url":null,"abstract":"In this paper, an intelligent electronic nose (EN)system designed using cheap metal oxide gas sensors (MOGS) is designed to detect fires at an early stage. The time series signals obtained from the same source of fire are highly correlated, and different sources of fire exhibit unique patterns in the time series data. Therefore, the error back propagation (BP) method can be effectively used for the classification of the tested smell. The accuracy of 99.6% is achieved by using only a single training dataset from each source of fire. The accuracy achieved with the k-means algorithm is 98.3%, which also shows the high ability of the EN in detecting the early stage of fire from various sources.","PeriodicalId":269090,"journal":{"name":"2008 The Second International Conference on Advanced Engineering Computing and Applications in Sciences","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Intelligent Electronic Nose Systems for Fire Detection Systems Based on Neural Networks\",\"authors\":\"T. Fujinaka, M. Yoshioka, S. Omatu\",\"doi\":\"10.1109/ADVCOMP.2008.47\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an intelligent electronic nose (EN)system designed using cheap metal oxide gas sensors (MOGS) is designed to detect fires at an early stage. The time series signals obtained from the same source of fire are highly correlated, and different sources of fire exhibit unique patterns in the time series data. Therefore, the error back propagation (BP) method can be effectively used for the classification of the tested smell. The accuracy of 99.6% is achieved by using only a single training dataset from each source of fire. The accuracy achieved with the k-means algorithm is 98.3%, which also shows the high ability of the EN in detecting the early stage of fire from various sources.\",\"PeriodicalId\":269090,\"journal\":{\"name\":\"2008 The Second International Conference on Advanced Engineering Computing and Applications in Sciences\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 The Second International Conference on Advanced Engineering Computing and Applications in Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ADVCOMP.2008.47\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 The Second International Conference on Advanced Engineering Computing and Applications in Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ADVCOMP.2008.47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Intelligent Electronic Nose Systems for Fire Detection Systems Based on Neural Networks
In this paper, an intelligent electronic nose (EN)system designed using cheap metal oxide gas sensors (MOGS) is designed to detect fires at an early stage. The time series signals obtained from the same source of fire are highly correlated, and different sources of fire exhibit unique patterns in the time series data. Therefore, the error back propagation (BP) method can be effectively used for the classification of the tested smell. The accuracy of 99.6% is achieved by using only a single training dataset from each source of fire. The accuracy achieved with the k-means algorithm is 98.3%, which also shows the high ability of the EN in detecting the early stage of fire from various sources.