基于深度学习的软件定义网络(SDN) DDoS检测系统

Quamar Niyaz, Weiqing Sun, A. Javaid
{"title":"基于深度学习的软件定义网络(SDN) DDoS检测系统","authors":"Quamar Niyaz, Weiqing Sun, A. Javaid","doi":"10.4108/eai.28-12-2017.153515","DOIUrl":null,"url":null,"abstract":"Distributed Denial of Service (DDoS) is one of the most prevalent attacks that an organizational network infrastructure comes across nowadays. We propose a deep learning based multi-vector DDoS detection system in a software-defined network (SDN) environment. SDN provides flexibility to program network devices for different objectives and eliminates the need for third-party vendor-specific hardware. We implement our system as a network application on top of an SDN controller. We use deep learning for feature reduction of a large set of features derived from network traffic headers. We evaluate our system based on different performance metrics by applying it on traffic traces collected from different scenarios. We observe high accuracy with a low false-positive for attack detection in our proposed system.","PeriodicalId":335727,"journal":{"name":"EAI Endorsed Trans. Security Safety","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"241","resultStr":"{\"title\":\"A Deep Learning Based DDoS Detection System in Software-Defined Networking (SDN)\",\"authors\":\"Quamar Niyaz, Weiqing Sun, A. Javaid\",\"doi\":\"10.4108/eai.28-12-2017.153515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Distributed Denial of Service (DDoS) is one of the most prevalent attacks that an organizational network infrastructure comes across nowadays. We propose a deep learning based multi-vector DDoS detection system in a software-defined network (SDN) environment. SDN provides flexibility to program network devices for different objectives and eliminates the need for third-party vendor-specific hardware. We implement our system as a network application on top of an SDN controller. We use deep learning for feature reduction of a large set of features derived from network traffic headers. We evaluate our system based on different performance metrics by applying it on traffic traces collected from different scenarios. We observe high accuracy with a low false-positive for attack detection in our proposed system.\",\"PeriodicalId\":335727,\"journal\":{\"name\":\"EAI Endorsed Trans. Security Safety\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"241\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EAI Endorsed Trans. Security Safety\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4108/eai.28-12-2017.153515\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EAI Endorsed Trans. Security Safety","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/eai.28-12-2017.153515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 241

摘要

分布式拒绝服务(DDoS)是当今组织网络基础设施遇到的最普遍的攻击之一。我们提出了一种基于深度学习的软件定义网络(SDN)环境下的多向量DDoS检测系统。SDN提供了为不同目标编程网络设备的灵活性,并且消除了对第三方供应商特定硬件的需求。我们将系统作为SDN控制器之上的网络应用程序来实现。我们使用深度学习对来自网络流量报头的大量特征进行特征约简。我们根据不同的性能指标评估我们的系统,将其应用于从不同场景收集的流量轨迹。在我们提出的系统中,我们观察到攻击检测的高准确性和低假阳性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Deep Learning Based DDoS Detection System in Software-Defined Networking (SDN)
Distributed Denial of Service (DDoS) is one of the most prevalent attacks that an organizational network infrastructure comes across nowadays. We propose a deep learning based multi-vector DDoS detection system in a software-defined network (SDN) environment. SDN provides flexibility to program network devices for different objectives and eliminates the need for third-party vendor-specific hardware. We implement our system as a network application on top of an SDN controller. We use deep learning for feature reduction of a large set of features derived from network traffic headers. We evaluate our system based on different performance metrics by applying it on traffic traces collected from different scenarios. We observe high accuracy with a low false-positive for attack detection in our proposed system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Systemic Security and Privacy Review: Attacks and Prevention Mechanisms over IOT Layers Mitigating Vulnerabilities in Closed Source Software Comparing Online Surveys for Cybersecurity: SONA and MTurk Dynamic Risk Assessment and Analysis Framework for Large-Scale Cyber-Physical Systems How data-sharing nudges influence people's privacy preferences: A machine learning-based analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1