高动态CPS中基于集成的可扩展QoS方法

V. Matena, Alejandro Masrur, T. Bures
{"title":"高动态CPS中基于集成的可扩展QoS方法","authors":"V. Matena, Alejandro Masrur, T. Bures","doi":"10.1109/SEAA.2017.62","DOIUrl":null,"url":null,"abstract":"Modern cyber-physical systems (CPS) often involve distributed devices/components that closely interact with each other and their environment. In this context, operation conditions may constantly change and it is not always possible to guarantee quality of service (QoS), particularly, if resourcesdegrade or stop being available. In addition, sometimes, one would like QoS to scale up/down with operation conditions, e.g., maximize efficiency, minimize energy consumption, etc. without compromising safety. However, traditional design and development techniques fail to capture the dynamics of modern CPS, since they rather focus on individual components/devices, and are unable to provide such QoS guarantees. To overcome this problem, we propose a design methodology based on the concept of ensemble, i.e., a dynamic grouping of components, which allows for scalable QoS guaranties. We illustrate the utility of our approach based on a case study consisting of an intelligent production line and analyze the effect on performance as communication between components degrades. Finally, our methodology can be incorporated into existing ensemble-based tools such as DEECo, Helena or jRESP to generate executable code to be deployed onto distributed devices.","PeriodicalId":151513,"journal":{"name":"2017 43rd Euromicro Conference on Software Engineering and Advanced Applications (SEAA)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Ensemble-Based Approach for Scalable QoS in Highly Dynamic CPS\",\"authors\":\"V. Matena, Alejandro Masrur, T. Bures\",\"doi\":\"10.1109/SEAA.2017.62\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern cyber-physical systems (CPS) often involve distributed devices/components that closely interact with each other and their environment. In this context, operation conditions may constantly change and it is not always possible to guarantee quality of service (QoS), particularly, if resourcesdegrade or stop being available. In addition, sometimes, one would like QoS to scale up/down with operation conditions, e.g., maximize efficiency, minimize energy consumption, etc. without compromising safety. However, traditional design and development techniques fail to capture the dynamics of modern CPS, since they rather focus on individual components/devices, and are unable to provide such QoS guarantees. To overcome this problem, we propose a design methodology based on the concept of ensemble, i.e., a dynamic grouping of components, which allows for scalable QoS guaranties. We illustrate the utility of our approach based on a case study consisting of an intelligent production line and analyze the effect on performance as communication between components degrades. Finally, our methodology can be incorporated into existing ensemble-based tools such as DEECo, Helena or jRESP to generate executable code to be deployed onto distributed devices.\",\"PeriodicalId\":151513,\"journal\":{\"name\":\"2017 43rd Euromicro Conference on Software Engineering and Advanced Applications (SEAA)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 43rd Euromicro Conference on Software Engineering and Advanced Applications (SEAA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SEAA.2017.62\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 43rd Euromicro Conference on Software Engineering and Advanced Applications (SEAA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEAA.2017.62","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

现代网络物理系统(CPS)通常涉及分布式设备/组件,它们彼此之间及其环境密切交互。在这种情况下,操作条件可能会不断变化,并且不可能总是保证服务质量(QoS),特别是在资源降级或停止可用的情况下。此外,有时,人们希望QoS在不影响安全性的情况下,随着操作条件的增加/减少而增加/减少,例如,最大化效率,最小化能耗等。然而,传统的设计和开发技术无法捕捉现代CPS的动态,因为它们更侧重于单个组件/设备,并且无法提供这样的QoS保证。为了克服这个问题,我们提出了一种基于集成概念的设计方法,即组件的动态分组,它允许可扩展的QoS保证。我们基于一个由智能生产线组成的案例研究说明了我们的方法的实用性,并分析了组件之间通信降低对性能的影响。最后,我们的方法可以合并到现有的基于集成的工具中,如DEECo、Helena或jRESP,以生成可执行的代码,部署到分布式设备上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Ensemble-Based Approach for Scalable QoS in Highly Dynamic CPS
Modern cyber-physical systems (CPS) often involve distributed devices/components that closely interact with each other and their environment. In this context, operation conditions may constantly change and it is not always possible to guarantee quality of service (QoS), particularly, if resourcesdegrade or stop being available. In addition, sometimes, one would like QoS to scale up/down with operation conditions, e.g., maximize efficiency, minimize energy consumption, etc. without compromising safety. However, traditional design and development techniques fail to capture the dynamics of modern CPS, since they rather focus on individual components/devices, and are unable to provide such QoS guarantees. To overcome this problem, we propose a design methodology based on the concept of ensemble, i.e., a dynamic grouping of components, which allows for scalable QoS guaranties. We illustrate the utility of our approach based on a case study consisting of an intelligent production line and analyze the effect on performance as communication between components degrades. Finally, our methodology can be incorporated into existing ensemble-based tools such as DEECo, Helena or jRESP to generate executable code to be deployed onto distributed devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Patterns for Designing and Implementing an Environment for Software Start-Up Education Assessment of Agility in Software Organizations with a Web-Based Agility Assessment Tool Continuous practices and devops: beyond the buzz, what does it all mean? Guiding Quality Assurance for Mobile Applications with FIT4Apps — A Two-Step Evaluation A Literature Study on Privacy Patterns Research
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1