细枝末节设置为使用多尺度词袋范式的位串转换

W. Wong, M. D. Wong, Y. Kho, A. Teoh
{"title":"细枝末节设置为使用多尺度词袋范式的位串转换","authors":"W. Wong, M. D. Wong, Y. Kho, A. Teoh","doi":"10.1109/WIFS.2014.7084294","DOIUrl":null,"url":null,"abstract":"Minutiae-based matching is commonly used in fingerprint recognition systems due to its proven performance. However, such matching procedure usually involves unordered and variable size templates and it does not favour emerging bio-cryptography applications and most classifiers. This paper proposes a solution by converting the original minutiae set into a bit-string through the amalgamation of bag-of-words modelling, multi-scale construction and dynamic quantization. Experimental results show that the proposed method has high potential in biocryptography applications due to its outstanding EER of <; 0:51% and entropy of 723 bits. Further security and privacy concerns are also analyzed.","PeriodicalId":220523,"journal":{"name":"2014 IEEE International Workshop on Information Forensics and Security (WIFS)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Minutiae set to bit-string conversion using multi-scale bag-of-words paradigm\",\"authors\":\"W. Wong, M. D. Wong, Y. Kho, A. Teoh\",\"doi\":\"10.1109/WIFS.2014.7084294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Minutiae-based matching is commonly used in fingerprint recognition systems due to its proven performance. However, such matching procedure usually involves unordered and variable size templates and it does not favour emerging bio-cryptography applications and most classifiers. This paper proposes a solution by converting the original minutiae set into a bit-string through the amalgamation of bag-of-words modelling, multi-scale construction and dynamic quantization. Experimental results show that the proposed method has high potential in biocryptography applications due to its outstanding EER of <; 0:51% and entropy of 723 bits. Further security and privacy concerns are also analyzed.\",\"PeriodicalId\":220523,\"journal\":{\"name\":\"2014 IEEE International Workshop on Information Forensics and Security (WIFS)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Workshop on Information Forensics and Security (WIFS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WIFS.2014.7084294\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Workshop on Information Forensics and Security (WIFS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIFS.2014.7084294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

基于特征的匹配由于其良好的性能而被广泛应用于指纹识别系统中。然而,这种匹配过程通常涉及无序和可变大小的模板,它不适合新兴的生物密码学应用和大多数分类器。本文提出了一种结合词袋建模、多尺度构造和动态量化的方法,将原始细节集转化为位串的解决方案。实验结果表明,该方法具有良好的EER <;0:51,熵为723位。进一步的安全和隐私问题也进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Minutiae set to bit-string conversion using multi-scale bag-of-words paradigm
Minutiae-based matching is commonly used in fingerprint recognition systems due to its proven performance. However, such matching procedure usually involves unordered and variable size templates and it does not favour emerging bio-cryptography applications and most classifiers. This paper proposes a solution by converting the original minutiae set into a bit-string through the amalgamation of bag-of-words modelling, multi-scale construction and dynamic quantization. Experimental results show that the proposed method has high potential in biocryptography applications due to its outstanding EER of <; 0:51% and entropy of 723 bits. Further security and privacy concerns are also analyzed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling the flicker effect in camcorded videos to improve watermark robustness Fair resource allocation under an unknown jamming attack: a Bayesian game Puzzling face verification algorithms for privacy protection Botnet identification via universal anomaly detection Iterative filtering for semi-fragile self-recovery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1