Mohammad J. Abdel-Rahman, Hanif Rahbari, M. Krunz, P. Nain
{"title":"用于减轻控制通道DoS攻击的快速安全交会协议","authors":"Mohammad J. Abdel-Rahman, Hanif Rahbari, M. Krunz, P. Nain","doi":"10.1109/INFCOM.2013.6566797","DOIUrl":null,"url":null,"abstract":"The operation of a wireless network relies extensively on exchanging messages over a universally known channel, referred to as the control channel. The network performance can be severely degraded if a jammer launches a denial-of-service (DoS) attack on such a channel. In this paper, we design quorum-based frequency hopping (FH) algorithms that mitigate DoS attacks on the control channel of an asynchronous ad hoc network. Our algorithms can establish unicast as well as multicast communications under DoS attacks. They are fully distributed, do not incur any additional message exchange overhead, and can work in the absence of node synchronization. Furthermore, the multicast algorithms maintain the multicast group consistency. The efficiency of our algorithms is shown by analysis and simulations.","PeriodicalId":206346,"journal":{"name":"2013 Proceedings IEEE INFOCOM","volume":"131 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Fast and secure rendezvous protocols for mitigating control channel DoS attacks\",\"authors\":\"Mohammad J. Abdel-Rahman, Hanif Rahbari, M. Krunz, P. Nain\",\"doi\":\"10.1109/INFCOM.2013.6566797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The operation of a wireless network relies extensively on exchanging messages over a universally known channel, referred to as the control channel. The network performance can be severely degraded if a jammer launches a denial-of-service (DoS) attack on such a channel. In this paper, we design quorum-based frequency hopping (FH) algorithms that mitigate DoS attacks on the control channel of an asynchronous ad hoc network. Our algorithms can establish unicast as well as multicast communications under DoS attacks. They are fully distributed, do not incur any additional message exchange overhead, and can work in the absence of node synchronization. Furthermore, the multicast algorithms maintain the multicast group consistency. The efficiency of our algorithms is shown by analysis and simulations.\",\"PeriodicalId\":206346,\"journal\":{\"name\":\"2013 Proceedings IEEE INFOCOM\",\"volume\":\"131 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Proceedings IEEE INFOCOM\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INFCOM.2013.6566797\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Proceedings IEEE INFOCOM","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFCOM.2013.6566797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fast and secure rendezvous protocols for mitigating control channel DoS attacks
The operation of a wireless network relies extensively on exchanging messages over a universally known channel, referred to as the control channel. The network performance can be severely degraded if a jammer launches a denial-of-service (DoS) attack on such a channel. In this paper, we design quorum-based frequency hopping (FH) algorithms that mitigate DoS attacks on the control channel of an asynchronous ad hoc network. Our algorithms can establish unicast as well as multicast communications under DoS attacks. They are fully distributed, do not incur any additional message exchange overhead, and can work in the absence of node synchronization. Furthermore, the multicast algorithms maintain the multicast group consistency. The efficiency of our algorithms is shown by analysis and simulations.