F-1分在鲨鱼数据行为分类中的改进

Ibrahim M Ali, H. Yeh, Yu Yang
{"title":"F-1分在鲨鱼数据行为分类中的改进","authors":"Ibrahim M Ali, H. Yeh, Yu Yang","doi":"10.1109/IGESSC55810.2022.9955331","DOIUrl":null,"url":null,"abstract":"The objective of this paper is to improve the F-1 score computed in classifying shark raw-data into behaviors, namely; Resting, Swimming, Feeding, and Non-Directed Motion (NDM). Combining two different sets of pre-processed data into one image is examined for F-1 score improvement. The two sets of pre-processed data are Fast Fourier Transformation (FFT) and Walsh-Hadamard Transformation (WHT). Combining these two sets in a Convolutional Neural Network (CNN) model resulted in considerably improved F-1 score, while combining them in a K-Nearest Neighbors (K-NN) model averaged their individual F-1 scores.","PeriodicalId":166147,"journal":{"name":"2022 IEEE Green Energy and Smart System Systems(IGESSC)","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improvement of F-1 Score in Classifying Shark Data into Shark Behaviors\",\"authors\":\"Ibrahim M Ali, H. Yeh, Yu Yang\",\"doi\":\"10.1109/IGESSC55810.2022.9955331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of this paper is to improve the F-1 score computed in classifying shark raw-data into behaviors, namely; Resting, Swimming, Feeding, and Non-Directed Motion (NDM). Combining two different sets of pre-processed data into one image is examined for F-1 score improvement. The two sets of pre-processed data are Fast Fourier Transformation (FFT) and Walsh-Hadamard Transformation (WHT). Combining these two sets in a Convolutional Neural Network (CNN) model resulted in considerably improved F-1 score, while combining them in a K-Nearest Neighbors (K-NN) model averaged their individual F-1 scores.\",\"PeriodicalId\":166147,\"journal\":{\"name\":\"2022 IEEE Green Energy and Smart System Systems(IGESSC)\",\"volume\":\"106 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Green Energy and Smart System Systems(IGESSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGESSC55810.2022.9955331\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Green Energy and Smart System Systems(IGESSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGESSC55810.2022.9955331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是改进将鲨鱼原始数据分类为行为时计算的F-1分数,即;休息、游泳、进食和非定向运动(NDM)将两组不同的预处理数据组合成一幅图像,检查F-1分数的提高。两组预处理数据分别是快速傅里叶变换(FFT)和沃尔什-哈达玛变换(WHT)。在卷积神经网络(CNN)模型中结合这两组结果可以显著提高F-1分数,而在k -近邻(K-NN)模型中结合它们可以平均它们的单个F-1分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improvement of F-1 Score in Classifying Shark Data into Shark Behaviors
The objective of this paper is to improve the F-1 score computed in classifying shark raw-data into behaviors, namely; Resting, Swimming, Feeding, and Non-Directed Motion (NDM). Combining two different sets of pre-processed data into one image is examined for F-1 score improvement. The two sets of pre-processed data are Fast Fourier Transformation (FFT) and Walsh-Hadamard Transformation (WHT). Combining these two sets in a Convolutional Neural Network (CNN) model resulted in considerably improved F-1 score, while combining them in a K-Nearest Neighbors (K-NN) model averaged their individual F-1 scores.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
RU-Net: Solar Panel Detection From Remote Sensing Image A Multi-Objective Optimization for Clustering Buildings into Smart Microgrid Communities Optimal sizing of microgrid DERs for specialized critical load resilience Implementation of Chaotic Encryption Architecture on FPGA for On-Chip Secure Communication* Long Short-Term Memory Customer-Centric Power Outage Prediction Models for Weather-Related Power Outages
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1