基于Faster-RCNN的MURA数据库骨折检测与定位

Shaghayegh Shahiri Tabarestani, A. Aghagolzadeh, M. Ezoji
{"title":"基于Faster-RCNN的MURA数据库骨折检测与定位","authors":"Shaghayegh Shahiri Tabarestani, A. Aghagolzadeh, M. Ezoji","doi":"10.1109/ICSPIS54653.2021.9729393","DOIUrl":null,"url":null,"abstract":"Using computer-aided diagnosis systems for helping radiologists and reducing the time of diagnosis is vital. In this paper, Faster-RCNN with three different backbone structures for feature extraction is applied for fracture zone prediction on bone X-rays of the MURA database. We used just three subsets of all seven subsets of the database. These subsets contain X-rays from the humerus, elbow, and forearm. The results of the experiments show that Faster-RCNN with Inception-ResNet-Version-2 as the feature extractor has the best performance. AP of this model on test samples in the best condition of parameters setting reaches 66.82 % for IOU=50%.","PeriodicalId":286966,"journal":{"name":"2021 7th International Conference on Signal Processing and Intelligent Systems (ICSPIS)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Bone Fracture Detection and Localization on MURA Database Using Faster-RCNN\",\"authors\":\"Shaghayegh Shahiri Tabarestani, A. Aghagolzadeh, M. Ezoji\",\"doi\":\"10.1109/ICSPIS54653.2021.9729393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using computer-aided diagnosis systems for helping radiologists and reducing the time of diagnosis is vital. In this paper, Faster-RCNN with three different backbone structures for feature extraction is applied for fracture zone prediction on bone X-rays of the MURA database. We used just three subsets of all seven subsets of the database. These subsets contain X-rays from the humerus, elbow, and forearm. The results of the experiments show that Faster-RCNN with Inception-ResNet-Version-2 as the feature extractor has the best performance. AP of this model on test samples in the best condition of parameters setting reaches 66.82 % for IOU=50%.\",\"PeriodicalId\":286966,\"journal\":{\"name\":\"2021 7th International Conference on Signal Processing and Intelligent Systems (ICSPIS)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 7th International Conference on Signal Processing and Intelligent Systems (ICSPIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSPIS54653.2021.9729393\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 7th International Conference on Signal Processing and Intelligent Systems (ICSPIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSPIS54653.2021.9729393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

使用计算机辅助诊断系统来帮助放射科医生和减少诊断时间是至关重要的。本文采用三种不同骨架结构的Faster-RCNN进行特征提取,对MURA数据库的骨x射线进行骨折区预测。我们只使用了数据库所有七个子集中的三个子集。这些亚群包括肱骨、肘部和前臂的x光片。实验结果表明,以Inception-ResNet-Version-2作为特征提取器的Faster-RCNN具有最好的性能。当IOU=50%时,该模型在参数设置的最佳条件下对试样的AP达到66.82%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bone Fracture Detection and Localization on MURA Database Using Faster-RCNN
Using computer-aided diagnosis systems for helping radiologists and reducing the time of diagnosis is vital. In this paper, Faster-RCNN with three different backbone structures for feature extraction is applied for fracture zone prediction on bone X-rays of the MURA database. We used just three subsets of all seven subsets of the database. These subsets contain X-rays from the humerus, elbow, and forearm. The results of the experiments show that Faster-RCNN with Inception-ResNet-Version-2 as the feature extractor has the best performance. AP of this model on test samples in the best condition of parameters setting reaches 66.82 % for IOU=50%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Intelligent Fault Diagnosis of Rolling BearingBased on Deep Transfer Learning Using Time-Frequency Representation Wind Energy Potential Approximation with Various Metaheuristic Optimization Techniques Deployment Listening to Sounds of Silence for Audio replay attack detection Transcranial Magnetic Stimulation of Prefrontal Cortex Alters Functional Brain Network Architecture: Graph Theoretical Analysis Anomaly Detection and Resilience-Oriented Countermeasures against Cyberattacks in Smart Grids
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1