基于数据流分析的动态并行监控中的跟踪与减少不确定性

Michelle L. Goodstein, Phillip B. Gibbons, M. Kozuch, T. Mowry
{"title":"基于数据流分析的动态并行监控中的跟踪与减少不确定性","authors":"Michelle L. Goodstein, Phillip B. Gibbons, M. Kozuch, T. Mowry","doi":"10.1109/PACT.2015.20","DOIUrl":null,"url":null,"abstract":"Dataflow analysis-based dynamic parallel monitoring (DADPM) is a recent approach for identifying bugs in parallel software as it executes, based on the key insight of explicitly modeling a sliding window of uncertainty across parallel threads. While this makes the approach practical and scalable, it also introduces the possibility of false positives in the analysis. In this paper, we improve upon the DADPM framework through two observations. First, by explicitly tracking new “uncertain” states in the metadata lattice, we can distinguish potential false positives from true positives. Second, as the analysis tool runs dynamically, it can use the existence (or absence) of observed uncertain states to adjust the tradeoff between precision and performance on-the-fly. For example, we demonstrate how the epoch size parameter can be adjusted dynamically in response to uncertainty in order to achieve better performance and precision than when the tool is statically configured. This paper shows how to adapt a canonical dataflow analysis problem (reaching definitions) and a popular security monitoring tool (TAINTCHECK) to our new uncertainty-tracking framework, and provides new provable guarantees that reported true errors are now precise.","PeriodicalId":385398,"journal":{"name":"2015 International Conference on Parallel Architecture and Compilation (PACT)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tracking and Reducing Uncertainty in Dataflow Analysis-Based Dynamic Parallel Monitoring\",\"authors\":\"Michelle L. Goodstein, Phillip B. Gibbons, M. Kozuch, T. Mowry\",\"doi\":\"10.1109/PACT.2015.20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dataflow analysis-based dynamic parallel monitoring (DADPM) is a recent approach for identifying bugs in parallel software as it executes, based on the key insight of explicitly modeling a sliding window of uncertainty across parallel threads. While this makes the approach practical and scalable, it also introduces the possibility of false positives in the analysis. In this paper, we improve upon the DADPM framework through two observations. First, by explicitly tracking new “uncertain” states in the metadata lattice, we can distinguish potential false positives from true positives. Second, as the analysis tool runs dynamically, it can use the existence (or absence) of observed uncertain states to adjust the tradeoff between precision and performance on-the-fly. For example, we demonstrate how the epoch size parameter can be adjusted dynamically in response to uncertainty in order to achieve better performance and precision than when the tool is statically configured. This paper shows how to adapt a canonical dataflow analysis problem (reaching definitions) and a popular security monitoring tool (TAINTCHECK) to our new uncertainty-tracking framework, and provides new provable guarantees that reported true errors are now precise.\",\"PeriodicalId\":385398,\"journal\":{\"name\":\"2015 International Conference on Parallel Architecture and Compilation (PACT)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Parallel Architecture and Compilation (PACT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PACT.2015.20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Parallel Architecture and Compilation (PACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACT.2015.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于数据流分析的动态并行监控(DADPM)是一种最新的方法,用于在并行软件执行时识别bug,该方法基于对跨并行线程的不确定性滑动窗口的显式建模的关键见解。虽然这使得该方法具有实用性和可扩展性,但它也在分析中引入了误报的可能性。在本文中,我们通过两个观察来改进DADPM框架。首先,通过显式跟踪元数据晶格中新的“不确定”状态,我们可以区分潜在的假阳性和真阳性。其次,由于分析工具是动态运行的,它可以利用观察到的不确定状态的存在(或不存在)来实时调整精度和性能之间的权衡。例如,我们演示了如何动态调整epoch大小参数以响应不确定性,以获得比静态配置工具更好的性能和精度。本文展示了如何将规范数据流分析问题(达到定义)和流行的安全监控工具(TAINTCHECK)应用于我们的新不确定性跟踪框架,并提供了新的可证明保证,即报告的真实错误现在是精确的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tracking and Reducing Uncertainty in Dataflow Analysis-Based Dynamic Parallel Monitoring
Dataflow analysis-based dynamic parallel monitoring (DADPM) is a recent approach for identifying bugs in parallel software as it executes, based on the key insight of explicitly modeling a sliding window of uncertainty across parallel threads. While this makes the approach practical and scalable, it also introduces the possibility of false positives in the analysis. In this paper, we improve upon the DADPM framework through two observations. First, by explicitly tracking new “uncertain” states in the metadata lattice, we can distinguish potential false positives from true positives. Second, as the analysis tool runs dynamically, it can use the existence (or absence) of observed uncertain states to adjust the tradeoff between precision and performance on-the-fly. For example, we demonstrate how the epoch size parameter can be adjusted dynamically in response to uncertainty in order to achieve better performance and precision than when the tool is statically configured. This paper shows how to adapt a canonical dataflow analysis problem (reaching definitions) and a popular security monitoring tool (TAINTCHECK) to our new uncertainty-tracking framework, and provides new provable guarantees that reported true errors are now precise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Storage Consolidation on SSDs: Not Always a Panacea, but Can We Ease the Pain? AREP: Adaptive Resource Efficient Prefetching for Maximizing Multicore Performance NVMMU: A Non-volatile Memory Management Unit for Heterogeneous GPU-SSD Architectures Scalable Task Scheduling and Synchronization Using Hierarchical Effects Scalable SIMD-Efficient Graph Processing on GPUs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1