{"title":"线性奇异分数阶系统可容许性的改进","authors":"Xuefeng Zhang, Yingbo Zhang","doi":"10.1115/detc2019-98329","DOIUrl":null,"url":null,"abstract":"\n This paper considers the least solutions of linear matrix inequalities (LMIs) in criteria of admissibility for continuous singular fractional order systems (FOS). The new criteria are given which are strict LMIs and do not involve equality constraint and with the less LMI decision variables. With brief and simple results of this paper, the numbers of solved matrices are reduced from a pair of matrices to just a matrix in which we can analyze singular fractional order systems with completely consistent format as normal systems.","PeriodicalId":166402,"journal":{"name":"Volume 9: 15th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Improvement of Admissibility of Linear Singular Fractional Order Systems\",\"authors\":\"Xuefeng Zhang, Yingbo Zhang\",\"doi\":\"10.1115/detc2019-98329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This paper considers the least solutions of linear matrix inequalities (LMIs) in criteria of admissibility for continuous singular fractional order systems (FOS). The new criteria are given which are strict LMIs and do not involve equality constraint and with the less LMI decision variables. With brief and simple results of this paper, the numbers of solved matrices are reduced from a pair of matrices to just a matrix in which we can analyze singular fractional order systems with completely consistent format as normal systems.\",\"PeriodicalId\":166402,\"journal\":{\"name\":\"Volume 9: 15th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 9: 15th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/detc2019-98329\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: 15th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2019-98329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improvement of Admissibility of Linear Singular Fractional Order Systems
This paper considers the least solutions of linear matrix inequalities (LMIs) in criteria of admissibility for continuous singular fractional order systems (FOS). The new criteria are given which are strict LMIs and do not involve equality constraint and with the less LMI decision variables. With brief and simple results of this paper, the numbers of solved matrices are reduced from a pair of matrices to just a matrix in which we can analyze singular fractional order systems with completely consistent format as normal systems.