基于时空特征的违规停车事件检测

Jiawei Jiang, Yu-Chen Chen, Hsun-Ping Hsieh
{"title":"基于时空特征的违规停车事件检测","authors":"Jiawei Jiang, Yu-Chen Chen, Hsun-Ping Hsieh","doi":"10.1145/3397536.3428350","DOIUrl":null,"url":null,"abstract":"In this work, we propose a novel deep learning framework, called Attention-Based 2-layer Bi-ConvLSTM (denoted as Att-2BiConvLSTM) model, to predict the number of illegal-parking events in urban spaces. We model the research as a \"next frame\" prediction problem, which aims to improve urban transportation conditions and enhance the security and right-of-way for pedestrians. Various features in the prediction model are considered: some of them (e.g., hourly weather, traffic volumes) are dynamic every hour, while others (e.g., road network, point-of-interests) are static. To boost the effectiveness of static features, we propose a dynamic training process to transform the static features into dynamics. After that, all features can vary with time so that they are capable of handling a real-time prediction scenario. Moreover, we propose an attention mechanism for enhancing our bi-directional ConvLSTM model. With experimental verifications, we find that our proposed Att-2BiConvLSTM model can outperform other state-of-art and baseline methods. Besides, our model is useful for combining all features to make an accurate prediction.","PeriodicalId":233918,"journal":{"name":"Proceedings of the 28th International Conference on Advances in Geographic Information Systems","volume":"228 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Detection of Illegal Parking Events Using Spatial-Temporal Features\",\"authors\":\"Jiawei Jiang, Yu-Chen Chen, Hsun-Ping Hsieh\",\"doi\":\"10.1145/3397536.3428350\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we propose a novel deep learning framework, called Attention-Based 2-layer Bi-ConvLSTM (denoted as Att-2BiConvLSTM) model, to predict the number of illegal-parking events in urban spaces. We model the research as a \\\"next frame\\\" prediction problem, which aims to improve urban transportation conditions and enhance the security and right-of-way for pedestrians. Various features in the prediction model are considered: some of them (e.g., hourly weather, traffic volumes) are dynamic every hour, while others (e.g., road network, point-of-interests) are static. To boost the effectiveness of static features, we propose a dynamic training process to transform the static features into dynamics. After that, all features can vary with time so that they are capable of handling a real-time prediction scenario. Moreover, we propose an attention mechanism for enhancing our bi-directional ConvLSTM model. With experimental verifications, we find that our proposed Att-2BiConvLSTM model can outperform other state-of-art and baseline methods. Besides, our model is useful for combining all features to make an accurate prediction.\",\"PeriodicalId\":233918,\"journal\":{\"name\":\"Proceedings of the 28th International Conference on Advances in Geographic Information Systems\",\"volume\":\"228 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 28th International Conference on Advances in Geographic Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3397536.3428350\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3397536.3428350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在这项工作中,我们提出了一种新的深度学习框架,称为基于注意力的2层Bi-ConvLSTM(表示为at - 2biconvlstm)模型,用于预测城市空间中非法停车事件的数量。我们将研究建模为“下一帧”预测问题,旨在改善城市交通条件,增强行人的安全性和路权。预测模型中考虑了各种特征:其中一些(例如,每小时的天气,交通量)是每小时动态的,而另一些(例如,道路网络,兴趣点)是静态的。为了提高静态特征的有效性,我们提出了一种动态训练过程,将静态特征转化为动态特征。之后,所有的特征都可以随时间变化,这样它们就能够处理实时预测场景。此外,我们提出了一种注意机制来增强我们的双向ConvLSTM模型。通过实验验证,我们发现我们提出的at - 2biconvlstm模型可以优于其他最先进的基线方法。此外,我们的模型有助于结合所有特征进行准确的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detection of Illegal Parking Events Using Spatial-Temporal Features
In this work, we propose a novel deep learning framework, called Attention-Based 2-layer Bi-ConvLSTM (denoted as Att-2BiConvLSTM) model, to predict the number of illegal-parking events in urban spaces. We model the research as a "next frame" prediction problem, which aims to improve urban transportation conditions and enhance the security and right-of-way for pedestrians. Various features in the prediction model are considered: some of them (e.g., hourly weather, traffic volumes) are dynamic every hour, while others (e.g., road network, point-of-interests) are static. To boost the effectiveness of static features, we propose a dynamic training process to transform the static features into dynamics. After that, all features can vary with time so that they are capable of handling a real-time prediction scenario. Moreover, we propose an attention mechanism for enhancing our bi-directional ConvLSTM model. With experimental verifications, we find that our proposed Att-2BiConvLSTM model can outperform other state-of-art and baseline methods. Besides, our model is useful for combining all features to make an accurate prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Poet Distributed Spatiotemporal Trajectory Query Processing in SQL A Time-Windowed Data Structure for Spatial Density Maps Distributed Spatial-Keyword kNN Monitoring for Location-aware Pub/Sub Platooning Graph for Safer Traffic Management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1