局部-整体-焦点:在全尺寸乳房x光片上识别乳房肿块和钙化团块

Jun Huang, He Xiao, Qingfeng Wang, Zhiqin Liu, Bo Chen, Yaobin Wang, Ping Zhang, Ying Zhou
{"title":"局部-整体-焦点:在全尺寸乳房x光片上识别乳房肿块和钙化团块","authors":"Jun Huang, He Xiao, Qingfeng Wang, Zhiqin Liu, Bo Chen, Yaobin Wang, Ping Zhang, Ying Zhou","doi":"10.1109/BIBM55620.2022.9995111","DOIUrl":null,"url":null,"abstract":"The detection of breast masses and calcified clusters on mammograms is critical for early diagnosis and treatment to improve the survivals of breast cancer patients. In this study, we propose a local-whole-focus pipeline to automatically identify breast masses and calcified clusters on full-size mammograms, from local breast tissues to the whole mammograms, and then focusing on the lesion areas. We first train a deep model to learn the fine features of breast masses and calcified clusteres on local breast tissues, and then transfer the well-trained deep model to identify breast masses and calcified clusteres on full-size mammograms with image-level annotations. We also highlight the areas of the breast masses and calcified clusteres in mammograms to visualize the identification results. We evaluated the proposed local-whole-focus pipeline on a public dataset CBIS-DDSM (Curated Breast Imaging Subset of Digital Database for Screening Mammography) and a private dataset MY-Mammo (Mianyang central hospital mammograms). The experiment results showed the DenseNet embedded with squeeze-and-excitation (SE) blocks achieved competitive results on the identification of breast masses and calcified clusteres on full-size mammograms. The highlight areas of the breast masses and calcified clusteres on the entire mammograms could also explain model decision making, which are important in practical medical applications. Index Terms–Breast mass, calcified cluster, local breast tissue, full-size mammogram, automatic identification.","PeriodicalId":210337,"journal":{"name":"2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Local-Whole-Focus: Identifying Breast Masses and Calcified Clusters on Full-Size Mammograms\",\"authors\":\"Jun Huang, He Xiao, Qingfeng Wang, Zhiqin Liu, Bo Chen, Yaobin Wang, Ping Zhang, Ying Zhou\",\"doi\":\"10.1109/BIBM55620.2022.9995111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The detection of breast masses and calcified clusters on mammograms is critical for early diagnosis and treatment to improve the survivals of breast cancer patients. In this study, we propose a local-whole-focus pipeline to automatically identify breast masses and calcified clusters on full-size mammograms, from local breast tissues to the whole mammograms, and then focusing on the lesion areas. We first train a deep model to learn the fine features of breast masses and calcified clusteres on local breast tissues, and then transfer the well-trained deep model to identify breast masses and calcified clusteres on full-size mammograms with image-level annotations. We also highlight the areas of the breast masses and calcified clusteres in mammograms to visualize the identification results. We evaluated the proposed local-whole-focus pipeline on a public dataset CBIS-DDSM (Curated Breast Imaging Subset of Digital Database for Screening Mammography) and a private dataset MY-Mammo (Mianyang central hospital mammograms). The experiment results showed the DenseNet embedded with squeeze-and-excitation (SE) blocks achieved competitive results on the identification of breast masses and calcified clusteres on full-size mammograms. The highlight areas of the breast masses and calcified clusteres on the entire mammograms could also explain model decision making, which are important in practical medical applications. Index Terms–Breast mass, calcified cluster, local breast tissue, full-size mammogram, automatic identification.\",\"PeriodicalId\":210337,\"journal\":{\"name\":\"2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBM55620.2022.9995111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM55620.2022.9995111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

乳房x光检查中乳腺肿块和钙化团块的发现对于早期诊断和治疗以提高乳腺癌患者的生存率至关重要。在本研究中,我们提出了一种局部-全聚焦管道来自动识别全尺寸乳房x光片上的乳房肿块和钙化簇,从局部乳房组织到整个乳房x光片,然后聚焦病变区域。我们首先训练一个深度模型来学习乳腺局部组织肿块和钙化簇的精细特征,然后通过图像级注释将训练好的深度模型转移到全尺寸乳房x光片上识别肿块和钙化簇。我们还在乳房x光片上突出显示乳腺肿块和钙化团块的区域,以使识别结果可视化。我们在一个公共数据集CBIS-DDSM(乳腺筛查数字数据库的乳腺成像子集)和一个私人数据集my - mamo(绵阳市中心医院乳房x光片)上评估了拟议的局部-整体焦点管道。实验结果表明,嵌入挤压激发(SE)块的DenseNet在全尺寸乳房x光片上识别乳房肿块和钙化团簇方面取得了竞争结果。乳房肿块和钙化团簇在整个乳房x光片上的突出区域也可以解释模型决策,这在实际医学应用中很重要。索引术语:乳房肿块,钙化簇,局部乳房组织,全尺寸乳房x光片,自动识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Local-Whole-Focus: Identifying Breast Masses and Calcified Clusters on Full-Size Mammograms
The detection of breast masses and calcified clusters on mammograms is critical for early diagnosis and treatment to improve the survivals of breast cancer patients. In this study, we propose a local-whole-focus pipeline to automatically identify breast masses and calcified clusters on full-size mammograms, from local breast tissues to the whole mammograms, and then focusing on the lesion areas. We first train a deep model to learn the fine features of breast masses and calcified clusteres on local breast tissues, and then transfer the well-trained deep model to identify breast masses and calcified clusteres on full-size mammograms with image-level annotations. We also highlight the areas of the breast masses and calcified clusteres in mammograms to visualize the identification results. We evaluated the proposed local-whole-focus pipeline on a public dataset CBIS-DDSM (Curated Breast Imaging Subset of Digital Database for Screening Mammography) and a private dataset MY-Mammo (Mianyang central hospital mammograms). The experiment results showed the DenseNet embedded with squeeze-and-excitation (SE) blocks achieved competitive results on the identification of breast masses and calcified clusteres on full-size mammograms. The highlight areas of the breast masses and calcified clusteres on the entire mammograms could also explain model decision making, which are important in practical medical applications. Index Terms–Breast mass, calcified cluster, local breast tissue, full-size mammogram, automatic identification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A framework for associating structural variants with cell-specific transcription factors and histone modifications in defect phenotypes Secure Password Using EEG-based BrainPrint System: Unlock Smartphone Password Using Brain-Computer Interface Technology On functional annotation with gene co-expression networks ST-ChIP: Accurate prediction of spatiotemporal ChIP-seq data with recurrent neural networks Discovering the Knowledge in Unstructured Early Drug Development Data Using NLP and Advanced Analytics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1