用递归神经网络实现视频时间解码机

A. Lazar, Yiyin Zhou
{"title":"用递归神经网络实现视频时间解码机","authors":"A. Lazar, Yiyin Zhou","doi":"10.1109/IJCNN.2011.6033335","DOIUrl":null,"url":null,"abstract":"Video Time Decoding Machines faithfully reconstruct bandlimited stimuli encoded with Video Time Encoding Machines. The key step in recovery calls for the pseudo-inversion of a typically poorly conditioned large scale matrix. We investigate the realization of time decoders employing only neural components. We show that Video Time Decoding Machines can be realized with recurrent neural networks, describe their architecture and evaluate their performance. We provide the first demonstration of recovery of natural and synthetic video scenes encoded in the spike domain with decoders realized with only neural components. The performance in recovery using the latter decoder is not distinguishable from the one based on the pseudo-inversion matrix method.","PeriodicalId":415833,"journal":{"name":"The 2011 International Joint Conference on Neural Networks","volume":"599 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Realizing Video Time Decoding Machines with recurrent neural networks\",\"authors\":\"A. Lazar, Yiyin Zhou\",\"doi\":\"10.1109/IJCNN.2011.6033335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Video Time Decoding Machines faithfully reconstruct bandlimited stimuli encoded with Video Time Encoding Machines. The key step in recovery calls for the pseudo-inversion of a typically poorly conditioned large scale matrix. We investigate the realization of time decoders employing only neural components. We show that Video Time Decoding Machines can be realized with recurrent neural networks, describe their architecture and evaluate their performance. We provide the first demonstration of recovery of natural and synthetic video scenes encoded in the spike domain with decoders realized with only neural components. The performance in recovery using the latter decoder is not distinguishable from the one based on the pseudo-inversion matrix method.\",\"PeriodicalId\":415833,\"journal\":{\"name\":\"The 2011 International Joint Conference on Neural Networks\",\"volume\":\"599 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 2011 International Joint Conference on Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2011.6033335\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2011 International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2011.6033335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

视频时间解码机忠实地重建视频时间编码机编码的带限刺激。恢复的关键步骤要求对典型的条件差的大规模矩阵进行伪反演。我们研究了仅使用神经元件的时间解码器的实现。我们证明了视频时间解码机可以用递归神经网络实现,描述了它们的结构并评估了它们的性能。我们首次展示了在尖峰域编码的自然和合成视频场景的恢复,解码器仅使用神经组件实现。使用后一种解码器的恢复性能与基于伪逆矩阵方法的解码器没有区别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Realizing Video Time Decoding Machines with recurrent neural networks
Video Time Decoding Machines faithfully reconstruct bandlimited stimuli encoded with Video Time Encoding Machines. The key step in recovery calls for the pseudo-inversion of a typically poorly conditioned large scale matrix. We investigate the realization of time decoders employing only neural components. We show that Video Time Decoding Machines can be realized with recurrent neural networks, describe their architecture and evaluate their performance. We provide the first demonstration of recovery of natural and synthetic video scenes encoded in the spike domain with decoders realized with only neural components. The performance in recovery using the latter decoder is not distinguishable from the one based on the pseudo-inversion matrix method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Chaos of protein folding EEG-based brain dynamics of driving distraction Residential energy system control and management using adaptive dynamic programming How the core theory of CLARION captures human decision-making Wiener systems for reconstruction of missing seismic traces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1