基于信任的多方面协同过滤

Noemi Mauro, L. Ardissono, Zhongli Filippo Hu
{"title":"基于信任的多方面协同过滤","authors":"Noemi Mauro, L. Ardissono, Zhongli Filippo Hu","doi":"10.1145/3320435.3320441","DOIUrl":null,"url":null,"abstract":"Many collaborative recommender systems leverage social correlation theories to improve suggestion performance. However, they focus on explicit relations between users and they leave out other types of information that can contribute to determine users' global reputation; e.g., public recognition of reviewers' quality. We are interested in understanding if and when these additional types of feedback improve Top-N recommendation. For this purpose, we propose a multi-faceted trust model to integrate local trust, represented by social links, with various types of global trust evidence provided by social networks. We aim at identifying general classes of data in order to make our model applicable to different case studies. Then, we test the model by applying it to a variant of User-to-User Collaborative filtering (U2UCF) which supports the fusion of rating similarity, local trust derived from social relations, and multi-faceted reputation for rating prediction. We test our model on two datasets: the Yelp one publishes generic friend relations between users but provides different types of trust feedback, including user profile endorsements. The LibraryThing dataset offers fewer types of feedback but it provides more selective friend relations aimed at content sharing. The results of our experiments show that, on the Yelp dataset, our model outperforms both U2UCF and state-of-the-art trust-based recommenders that only use rating similarity and social relations. Differently, in the LibraryThing dataset, the combination of social relations and rating similarity achieves the best results. The lesson we learn is that multi-faceted trust can be a valuable type of information for recommendation. However, before using it in an application domain, an analysis of the type and amount of available trust evidence has to be done to assess its real impact on recommendation performance.","PeriodicalId":254537,"journal":{"name":"Proceedings of the 27th ACM Conference on User Modeling, Adaptation and Personalization","volume":"122 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Multi-faceted Trust-based Collaborative Filtering\",\"authors\":\"Noemi Mauro, L. Ardissono, Zhongli Filippo Hu\",\"doi\":\"10.1145/3320435.3320441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many collaborative recommender systems leverage social correlation theories to improve suggestion performance. However, they focus on explicit relations between users and they leave out other types of information that can contribute to determine users' global reputation; e.g., public recognition of reviewers' quality. We are interested in understanding if and when these additional types of feedback improve Top-N recommendation. For this purpose, we propose a multi-faceted trust model to integrate local trust, represented by social links, with various types of global trust evidence provided by social networks. We aim at identifying general classes of data in order to make our model applicable to different case studies. Then, we test the model by applying it to a variant of User-to-User Collaborative filtering (U2UCF) which supports the fusion of rating similarity, local trust derived from social relations, and multi-faceted reputation for rating prediction. We test our model on two datasets: the Yelp one publishes generic friend relations between users but provides different types of trust feedback, including user profile endorsements. The LibraryThing dataset offers fewer types of feedback but it provides more selective friend relations aimed at content sharing. The results of our experiments show that, on the Yelp dataset, our model outperforms both U2UCF and state-of-the-art trust-based recommenders that only use rating similarity and social relations. Differently, in the LibraryThing dataset, the combination of social relations and rating similarity achieves the best results. The lesson we learn is that multi-faceted trust can be a valuable type of information for recommendation. However, before using it in an application domain, an analysis of the type and amount of available trust evidence has to be done to assess its real impact on recommendation performance.\",\"PeriodicalId\":254537,\"journal\":{\"name\":\"Proceedings of the 27th ACM Conference on User Modeling, Adaptation and Personalization\",\"volume\":\"122 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 27th ACM Conference on User Modeling, Adaptation and Personalization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3320435.3320441\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 27th ACM Conference on User Modeling, Adaptation and Personalization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3320435.3320441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

许多协作推荐系统利用社会关联理论来提高建议性能。然而,它们侧重于用户之间的明确关系,而忽略了可能有助于确定用户全球声誉的其他类型的信息;例如,公众对审稿人质量的认可。我们有兴趣了解这些额外类型的反馈是否以及何时会改善Top-N推荐。为此,我们提出了一个多层次的信任模型,将以社会联系为代表的局部信任与社会网络提供的各类全局信任证据相结合。我们的目标是确定数据的一般类别,以便使我们的模型适用于不同的案例研究。然后,我们通过将其应用于用户对用户协同过滤(U2UCF)的一个变体来测试模型,该模型支持评级相似度、来自社会关系的本地信任和多方面声誉的融合来进行评级预测。我们在两个数据集上测试我们的模型:Yelp发布用户之间的一般朋友关系,但提供不同类型的信任反馈,包括用户个人资料背书。LibraryThing数据集提供的反馈类型更少,但它提供了更多针对内容共享的选择性朋友关系。我们的实验结果表明,在Yelp数据集上,我们的模型优于U2UCF和最先进的基于信任的推荐,这些推荐只使用评级相似性和社会关系。不同的是,在LibraryThing数据集中,社会关系和评级相似度的结合达到了最好的效果。我们得到的教训是,多方面的信任可以成为一种有价值的推荐信息。然而,在将其用于应用程序领域之前,必须对可用信任证据的类型和数量进行分析,以评估其对推荐性能的实际影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-faceted Trust-based Collaborative Filtering
Many collaborative recommender systems leverage social correlation theories to improve suggestion performance. However, they focus on explicit relations between users and they leave out other types of information that can contribute to determine users' global reputation; e.g., public recognition of reviewers' quality. We are interested in understanding if and when these additional types of feedback improve Top-N recommendation. For this purpose, we propose a multi-faceted trust model to integrate local trust, represented by social links, with various types of global trust evidence provided by social networks. We aim at identifying general classes of data in order to make our model applicable to different case studies. Then, we test the model by applying it to a variant of User-to-User Collaborative filtering (U2UCF) which supports the fusion of rating similarity, local trust derived from social relations, and multi-faceted reputation for rating prediction. We test our model on two datasets: the Yelp one publishes generic friend relations between users but provides different types of trust feedback, including user profile endorsements. The LibraryThing dataset offers fewer types of feedback but it provides more selective friend relations aimed at content sharing. The results of our experiments show that, on the Yelp dataset, our model outperforms both U2UCF and state-of-the-art trust-based recommenders that only use rating similarity and social relations. Differently, in the LibraryThing dataset, the combination of social relations and rating similarity achieves the best results. The lesson we learn is that multi-faceted trust can be a valuable type of information for recommendation. However, before using it in an application domain, an analysis of the type and amount of available trust evidence has to be done to assess its real impact on recommendation performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive Modelling of Attentiveness to Messaging: A Hybrid Approach Engagement, Metrics and Personalisation: the Good, the Bad and the Ugly Towards Social Choice-based Explanations in Group Recommender Systems Personalized Gait-based Authentication Using UWB Wearable Devices Towards Utter Well-Being: Personalization for Guardian Angels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1