超几何分布是一种更精确的随机计算模型

T. Baker, J. Hayes
{"title":"超几何分布是一种更精确的随机计算模型","authors":"T. Baker, J. Hayes","doi":"10.23919/DATE48585.2020.9116492","DOIUrl":null,"url":null,"abstract":"A fundamental assumption in stochastic computing (SC) is that bit-streams are generally well-approximated by a Bernoulli process, i.e., a sequence of independent 0-1 choices. We show that this assumption is flawed in unexpected and significant ways for some bit-streams such as those produced by a typical LFSR-based stochastic number generator (SNG). In particular, the Bernoulli assumption leads to a surprising overestimation of output errors and how they vary with input changes. We then propose a more accurate model for such bit-streams based on the hypergeometric distribution and examine its implications for several SC applications. First, we explore the effect of correlation on a mux-based stochastic adder and show that, contrary to what was previously thought, it is not entirely correlation insensitive. Further, inspired by the hypergeometric model, we introduce a new mux tree adder that offers major area savings and accuracy improvement. The effectiveness of this study is validated on a large image processing circuit which achieves an accuracy improvement of 32%, combined with a reduction in overall circuit area.","PeriodicalId":289525,"journal":{"name":"2020 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"The Hypergeometric Distribution as a More Accurate Model for Stochastic Computing\",\"authors\":\"T. Baker, J. Hayes\",\"doi\":\"10.23919/DATE48585.2020.9116492\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A fundamental assumption in stochastic computing (SC) is that bit-streams are generally well-approximated by a Bernoulli process, i.e., a sequence of independent 0-1 choices. We show that this assumption is flawed in unexpected and significant ways for some bit-streams such as those produced by a typical LFSR-based stochastic number generator (SNG). In particular, the Bernoulli assumption leads to a surprising overestimation of output errors and how they vary with input changes. We then propose a more accurate model for such bit-streams based on the hypergeometric distribution and examine its implications for several SC applications. First, we explore the effect of correlation on a mux-based stochastic adder and show that, contrary to what was previously thought, it is not entirely correlation insensitive. Further, inspired by the hypergeometric model, we introduce a new mux tree adder that offers major area savings and accuracy improvement. The effectiveness of this study is validated on a large image processing circuit which achieves an accuracy improvement of 32%, combined with a reduction in overall circuit area.\",\"PeriodicalId\":289525,\"journal\":{\"name\":\"2020 Design, Automation & Test in Europe Conference & Exhibition (DATE)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Design, Automation & Test in Europe Conference & Exhibition (DATE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/DATE48585.2020.9116492\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/DATE48585.2020.9116492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

随机计算(SC)中的一个基本假设是,比特流通常由伯努利过程很好地近似,即一个独立的0-1选择序列。我们表明,对于一些比特流,例如由典型的基于lfsr的随机数字发生器(SNG)产生的比特流,这种假设在意想不到的和显著的方面存在缺陷。特别是,伯努利假设导致了对输出误差的惊人高估,以及它们如何随输入变化而变化。然后,我们提出了一个基于超几何分布的更准确的比特流模型,并研究了它对几个SC应用的影响。首先,我们探讨了相关性对基于多的随机加法器的影响,并表明,与以前认为的相反,它并非完全相关不敏感。此外,受超几何模型的启发,我们引入了一种新的多树加法器,可以节省大量面积并提高精度。在一个大型图像处理电路上验证了该研究的有效性,该电路的精度提高了32%,同时减小了整个电路的面积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Hypergeometric Distribution as a More Accurate Model for Stochastic Computing
A fundamental assumption in stochastic computing (SC) is that bit-streams are generally well-approximated by a Bernoulli process, i.e., a sequence of independent 0-1 choices. We show that this assumption is flawed in unexpected and significant ways for some bit-streams such as those produced by a typical LFSR-based stochastic number generator (SNG). In particular, the Bernoulli assumption leads to a surprising overestimation of output errors and how they vary with input changes. We then propose a more accurate model for such bit-streams based on the hypergeometric distribution and examine its implications for several SC applications. First, we explore the effect of correlation on a mux-based stochastic adder and show that, contrary to what was previously thought, it is not entirely correlation insensitive. Further, inspired by the hypergeometric model, we introduce a new mux tree adder that offers major area savings and accuracy improvement. The effectiveness of this study is validated on a large image processing circuit which achieves an accuracy improvement of 32%, combined with a reduction in overall circuit area.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
In-Memory Resistive RAM Implementation of Binarized Neural Networks for Medical Applications Towards Formal Verification of Optimized and Industrial Multipliers A 100KHz-1GHz Termination-dependent Human Body Communication Channel Measurement using Miniaturized Wearable Devices Computational SRAM Design Automation using Pushed-Rule Bitcells for Energy-Efficient Vector Processing PIM-Aligner: A Processing-in-MRAM Platform for Biological Sequence Alignment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1