相关瑞利衰落信道功率域NOMA功率不平衡分析

Shaokai Hu, Hao Huang, Guan Gui, H. Sari
{"title":"相关瑞利衰落信道功率域NOMA功率不平衡分析","authors":"Shaokai Hu, Hao Huang, Guan Gui, H. Sari","doi":"10.1109/LATINCOM56090.2022.10000692","DOIUrl":null,"url":null,"abstract":"This paper analyzes the power imbalance issue in power-domain NOMA (PD-NOMA) in the presence of channel correlations, typically encountered on the downlink of cellular systems when the base station antennas have an insufficient separation. In a recent paper, the authors analyzed this issue for a typical uplink scenario with uncorrelated channels, and the study revealed an astounding result that the optimum in terms of average error probability is achieved when the user signals are perfectly balanced in terms of power as in multi-user MIMO with power control. This result led to some questioning of the concept of PD-NOMA for uncorrelated Rayleigh fading channels. In the present paper, we make a similar analysis for the downlink, and the study gives a very clear insight into the influence of the power imbalance at different levels of channel correlation. First, with full correlation (user signals transmitted from the same antenna), the PD-NOMA concept reduces to simple signal constellation design. The optimum is achieved when the power imbalance between the user signals is such that the resulting constellation has uniform spacing. Any deviation from this optimum will lead to a hierarchical constellation with performance loss. Also, this optimum power imbalance is shown to hold for a range of strong channel correlations, but for moderate and low correlation values perfectly power balanced NOMA takes over as in the presence of uncorrelated channels.","PeriodicalId":221354,"journal":{"name":"2022 IEEE Latin-American Conference on Communications (LATINCOM)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of the Power Imbalance in Power-Domain NOMA on Correlated Rayleigh Fading Channels\",\"authors\":\"Shaokai Hu, Hao Huang, Guan Gui, H. Sari\",\"doi\":\"10.1109/LATINCOM56090.2022.10000692\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper analyzes the power imbalance issue in power-domain NOMA (PD-NOMA) in the presence of channel correlations, typically encountered on the downlink of cellular systems when the base station antennas have an insufficient separation. In a recent paper, the authors analyzed this issue for a typical uplink scenario with uncorrelated channels, and the study revealed an astounding result that the optimum in terms of average error probability is achieved when the user signals are perfectly balanced in terms of power as in multi-user MIMO with power control. This result led to some questioning of the concept of PD-NOMA for uncorrelated Rayleigh fading channels. In the present paper, we make a similar analysis for the downlink, and the study gives a very clear insight into the influence of the power imbalance at different levels of channel correlation. First, with full correlation (user signals transmitted from the same antenna), the PD-NOMA concept reduces to simple signal constellation design. The optimum is achieved when the power imbalance between the user signals is such that the resulting constellation has uniform spacing. Any deviation from this optimum will lead to a hierarchical constellation with performance loss. Also, this optimum power imbalance is shown to hold for a range of strong channel correlations, but for moderate and low correlation values perfectly power balanced NOMA takes over as in the presence of uncorrelated channels.\",\"PeriodicalId\":221354,\"journal\":{\"name\":\"2022 IEEE Latin-American Conference on Communications (LATINCOM)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Latin-American Conference on Communications (LATINCOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LATINCOM56090.2022.10000692\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Latin-American Conference on Communications (LATINCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LATINCOM56090.2022.10000692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文分析了存在信道相关的功率域NOMA (PD-NOMA)中的功率不平衡问题,这是蜂窝系统下行链路中基站天线间距不足时常见的问题。在最近的一篇论文中,作者分析了一个典型的不相关信道上行场景的这个问题,研究揭示了一个惊人的结果,即当用户信号在功率方面完全平衡时,就像在功率控制的多用户MIMO中一样,平均误差概率达到最佳。这一结果导致了对非相关瑞利衰落信道PD-NOMA概念的一些质疑。在本文中,我们对下行链路进行了类似的分析,该研究非常清楚地了解了不同信道相关水平下功率不平衡的影响。首先,在完全相关(用户信号从同一天线发射)的情况下,PD-NOMA概念简化为简单的信号星座设计。当用户信号之间的功率不平衡使得所得到的星座具有均匀间距时,达到最优。任何偏离这个最优值的情况都将导致性能损失的分层星座。此外,这种最佳功率不平衡被证明适用于一系列强通道相关性,但对于中等和低相关性值,完全功率平衡的NOMA接管了不相关通道的存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of the Power Imbalance in Power-Domain NOMA on Correlated Rayleigh Fading Channels
This paper analyzes the power imbalance issue in power-domain NOMA (PD-NOMA) in the presence of channel correlations, typically encountered on the downlink of cellular systems when the base station antennas have an insufficient separation. In a recent paper, the authors analyzed this issue for a typical uplink scenario with uncorrelated channels, and the study revealed an astounding result that the optimum in terms of average error probability is achieved when the user signals are perfectly balanced in terms of power as in multi-user MIMO with power control. This result led to some questioning of the concept of PD-NOMA for uncorrelated Rayleigh fading channels. In the present paper, we make a similar analysis for the downlink, and the study gives a very clear insight into the influence of the power imbalance at different levels of channel correlation. First, with full correlation (user signals transmitted from the same antenna), the PD-NOMA concept reduces to simple signal constellation design. The optimum is achieved when the power imbalance between the user signals is such that the resulting constellation has uniform spacing. Any deviation from this optimum will lead to a hierarchical constellation with performance loss. Also, this optimum power imbalance is shown to hold for a range of strong channel correlations, but for moderate and low correlation values perfectly power balanced NOMA takes over as in the presence of uncorrelated channels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-band Optical Network Assisted by GNPy: an Experimental Demonstration A Stacked Ensemble Classifier for an Intrusion Detection System in the Edge of IoT and IIoT Networks A Novel Short-term Vehicle Location Prediction using Temporal Graph Neural Networks LATINCOM 2022 Message from the General Chairs LATINCOM 2022 TOC
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1