语音增强的快速自适应卡尔曼滤波算法

Quanshen Mai, Dongzhi He, Yibin Hou, Zhangqin Huang
{"title":"语音增强的快速自适应卡尔曼滤波算法","authors":"Quanshen Mai, Dongzhi He, Yibin Hou, Zhangqin Huang","doi":"10.1109/CASE.2011.6042399","DOIUrl":null,"url":null,"abstract":"The speech enhancement is one of the effective techniques to solve speech degraded by noise. In this paper a fast speech enhancement method for noisy speech signals is presented, which is based on improved Kalman filtering. The conventional Kalman filter algorithm for speech enhancement needs to calculate the parameters of AR (auto-regressive) model, and perform a lot of matrix operations, which usually is non-adaptive. The speech enhancement algorithm proposed in this paper eliminates the matrix operations and reduces the calculating time by only constantly updating the first value of state vector X(n). We design a coefficient factor for adaptive filtering, to automatically amend the estimation of environmental noise by the observation data. Simulation results show that the fast adaptive algorithm using Kalman filtering is effective for speech enhancement.","PeriodicalId":236208,"journal":{"name":"2011 IEEE International Conference on Automation Science and Engineering","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"A fast adaptive Kalman filtering algorithm for speech enhancement\",\"authors\":\"Quanshen Mai, Dongzhi He, Yibin Hou, Zhangqin Huang\",\"doi\":\"10.1109/CASE.2011.6042399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The speech enhancement is one of the effective techniques to solve speech degraded by noise. In this paper a fast speech enhancement method for noisy speech signals is presented, which is based on improved Kalman filtering. The conventional Kalman filter algorithm for speech enhancement needs to calculate the parameters of AR (auto-regressive) model, and perform a lot of matrix operations, which usually is non-adaptive. The speech enhancement algorithm proposed in this paper eliminates the matrix operations and reduces the calculating time by only constantly updating the first value of state vector X(n). We design a coefficient factor for adaptive filtering, to automatically amend the estimation of environmental noise by the observation data. Simulation results show that the fast adaptive algorithm using Kalman filtering is effective for speech enhancement.\",\"PeriodicalId\":236208,\"journal\":{\"name\":\"2011 IEEE International Conference on Automation Science and Engineering\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on Automation Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CASE.2011.6042399\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Automation Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CASE.2011.6042399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

语音增强是解决语音噪声退化的有效技术之一。本文提出了一种基于改进卡尔曼滤波的噪声语音信号快速增强方法。传统的语音增强卡尔曼滤波算法需要计算AR(自回归)模型的参数,并进行大量的矩阵运算,通常是非自适应的。本文提出的语音增强算法通过不断更新状态向量X(n)的第一个值,消除了矩阵运算,减少了计算时间。设计了自适应滤波的系数因子,对观测数据对环境噪声的估计进行自动修正。仿真结果表明,基于卡尔曼滤波的快速自适应语音增强算法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A fast adaptive Kalman filtering algorithm for speech enhancement
The speech enhancement is one of the effective techniques to solve speech degraded by noise. In this paper a fast speech enhancement method for noisy speech signals is presented, which is based on improved Kalman filtering. The conventional Kalman filter algorithm for speech enhancement needs to calculate the parameters of AR (auto-regressive) model, and perform a lot of matrix operations, which usually is non-adaptive. The speech enhancement algorithm proposed in this paper eliminates the matrix operations and reduces the calculating time by only constantly updating the first value of state vector X(n). We design a coefficient factor for adaptive filtering, to automatically amend the estimation of environmental noise by the observation data. Simulation results show that the fast adaptive algorithm using Kalman filtering is effective for speech enhancement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A unified approach for the scheduling problem with rejection Designing maximally permissive deadlock avoidance policies for sequential resource allocation systems through classification theory Modeling and analysis of care delivery services within patient rooms Feedback control of machine startup for energy-efficient manufacturing in Bernoulli serial lines On the combination of fuzzy models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1