识别垃圾邮件而不偷看内容

Shlomo Hershkop, S. Stolfo
{"title":"识别垃圾邮件而不偷看内容","authors":"Shlomo Hershkop, S. Stolfo","doi":"10.1145/1144403.1144406","DOIUrl":null,"url":null,"abstract":"Currently available solutions attempt to filter out spam based on analyzing the contents of the message and calculating a score to indicate the 'spami-ness' of the message. However, users can typically identify their junk email without having to open and read the contents of the specific message. In this article, we outline the general problem, review current options, and propose a new user-level behavior model to identify spam messages. We show the performance of this approach and discuss some applications and future directions.","PeriodicalId":429016,"journal":{"name":"ACM Crossroads","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Identifying spam without peeking at the contents\",\"authors\":\"Shlomo Hershkop, S. Stolfo\",\"doi\":\"10.1145/1144403.1144406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Currently available solutions attempt to filter out spam based on analyzing the contents of the message and calculating a score to indicate the 'spami-ness' of the message. However, users can typically identify their junk email without having to open and read the contents of the specific message. In this article, we outline the general problem, review current options, and propose a new user-level behavior model to identify spam messages. We show the performance of this approach and discuss some applications and future directions.\",\"PeriodicalId\":429016,\"journal\":{\"name\":\"ACM Crossroads\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Crossroads\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1144403.1144406\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Crossroads","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1144403.1144406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

目前可用的解决方案试图通过分析消息内容并计算分数来表示消息的“垃圾邮件性”,从而过滤掉垃圾邮件。然而,用户通常可以识别他们的垃圾邮件,而不必打开和阅读特定邮件的内容。在本文中,我们概述了一般问题,回顾了当前的选项,并提出了一个新的用户级行为模型来识别垃圾邮件。我们展示了这种方法的性能,并讨论了一些应用和未来的发展方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identifying spam without peeking at the contents
Currently available solutions attempt to filter out spam based on analyzing the contents of the message and calculating a score to indicate the 'spami-ness' of the message. However, users can typically identify their junk email without having to open and read the contents of the specific message. In this article, we outline the general problem, review current options, and propose a new user-level behavior model to identify spam messages. We show the performance of this approach and discuss some applications and future directions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling object states and behaviors using a state action manager Superhuman speech by 2010: an interview with Jennifer Lai At a crossroads: TA-ing first-year computer science Introduction: computer vision and speech Getting started on natural language processing with Python
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1