胸部CT扫描的恶性胸膜间皮瘤分割

Wael Brahim, M. Mestiri, N. Betrouni, K. Hamrouni
{"title":"胸部CT扫描的恶性胸膜间皮瘤分割","authors":"Wael Brahim, M. Mestiri, N. Betrouni, K. Hamrouni","doi":"10.1109/ATSIP.2017.8075605","DOIUrl":null,"url":null,"abstract":"In this paper, a texture-based segmentation method of the Malignant Pleural Mesothelioma from thoracic CT scans is presented. For the texture analysis part, we have used an automatic sampling and a manual sampling to extract statistical features from the MPM texture. For the segmentation stage, the method iterates the whole CT volume and selects pixels satisfying the extracted statistical criteria. The assessment of the proposed method showed an acceptable degree of similarity rate (J=0.73) between the ground truth and the generated MPM volume.","PeriodicalId":259951,"journal":{"name":"2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Malignant pleural mesothelioma segmentation from thoracic CT scans\",\"authors\":\"Wael Brahim, M. Mestiri, N. Betrouni, K. Hamrouni\",\"doi\":\"10.1109/ATSIP.2017.8075605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a texture-based segmentation method of the Malignant Pleural Mesothelioma from thoracic CT scans is presented. For the texture analysis part, we have used an automatic sampling and a manual sampling to extract statistical features from the MPM texture. For the segmentation stage, the method iterates the whole CT volume and selects pixels satisfying the extracted statistical criteria. The assessment of the proposed method showed an acceptable degree of similarity rate (J=0.73) between the ground truth and the generated MPM volume.\",\"PeriodicalId\":259951,\"journal\":{\"name\":\"2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ATSIP.2017.8075605\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATSIP.2017.8075605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种基于纹理的胸膜恶性间皮瘤CT图像分割方法。在纹理分析部分,我们采用自动采样和手动采样两种方法从MPM纹理中提取统计特征。在分割阶段,该方法迭代整个CT体,选择满足提取统计准则的像素点。对所提出方法的评估表明,地面真实值与生成的MPM体积之间的相似率达到了可接受的程度(J=0.73)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Malignant pleural mesothelioma segmentation from thoracic CT scans
In this paper, a texture-based segmentation method of the Malignant Pleural Mesothelioma from thoracic CT scans is presented. For the texture analysis part, we have used an automatic sampling and a manual sampling to extract statistical features from the MPM texture. For the segmentation stage, the method iterates the whole CT volume and selects pixels satisfying the extracted statistical criteria. The assessment of the proposed method showed an acceptable degree of similarity rate (J=0.73) between the ground truth and the generated MPM volume.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Speckle noise reduction in digital speckle pattern interferometry using Riesz wavelets transform A new GLBSIF descriptor for face recognition in the uncontrolled environments Saliency attention and sift keypoints combination for automatic target recognition on MSTAR dataset A comparative study of interworking methods among differents rats in 5G context Diagnosis of osteoporosis disease from bone X-ray images with stacked sparse autoencoder and SVM classifier
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1