使用迁移学习的实时驾驶员困倦检测

N. Gupta, Faizan Khan, Bhavna Saini
{"title":"使用迁移学习的实时驾驶员困倦检测","authors":"N. Gupta, Faizan Khan, Bhavna Saini","doi":"10.1109/ICCT56969.2023.10075913","DOIUrl":null,"url":null,"abstract":"According to statistics, drowsy driving is the leading cause of accidents worldwide that result in the loss of precious lives and worsen public health. When a driver is fatigued, cameras can be employed to detect their drowsiness and inform them well before which can help in decreasing accidents. This work employes a transfer Learning model DenseNet to identify the driver drowsiness in real time. The MRL eye dataset of 84923 images has been used and the model works well with 91.56% accuracy.","PeriodicalId":128100,"journal":{"name":"2023 3rd International Conference on Intelligent Communication and Computational Techniques (ICCT)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Real Time Driver Drowsiness Detecion using Transfer learning\",\"authors\":\"N. Gupta, Faizan Khan, Bhavna Saini\",\"doi\":\"10.1109/ICCT56969.2023.10075913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"According to statistics, drowsy driving is the leading cause of accidents worldwide that result in the loss of precious lives and worsen public health. When a driver is fatigued, cameras can be employed to detect their drowsiness and inform them well before which can help in decreasing accidents. This work employes a transfer Learning model DenseNet to identify the driver drowsiness in real time. The MRL eye dataset of 84923 images has been used and the model works well with 91.56% accuracy.\",\"PeriodicalId\":128100,\"journal\":{\"name\":\"2023 3rd International Conference on Intelligent Communication and Computational Techniques (ICCT)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 3rd International Conference on Intelligent Communication and Computational Techniques (ICCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCT56969.2023.10075913\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 3rd International Conference on Intelligent Communication and Computational Techniques (ICCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCT56969.2023.10075913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

据统计,疲劳驾驶是世界范围内交通事故的主要原因,造成宝贵生命的损失,并恶化公共卫生。当司机疲劳时,摄像头可以检测到他们的困倦状态,并提前通知他们,这有助于减少事故。这项工作采用了一个迁移学习模型DenseNet来实时识别驾驶员的困倦状态。利用MRL眼睛数据集84923张图像,模型运行良好,准确率为91.56%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Real Time Driver Drowsiness Detecion using Transfer learning
According to statistics, drowsy driving is the leading cause of accidents worldwide that result in the loss of precious lives and worsen public health. When a driver is fatigued, cameras can be employed to detect their drowsiness and inform them well before which can help in decreasing accidents. This work employes a transfer Learning model DenseNet to identify the driver drowsiness in real time. The MRL eye dataset of 84923 images has been used and the model works well with 91.56% accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
About ICCT '23 A Novel Technique to Detect URL Phishing based on Feature Count Effectiveness of Anti-Spoofing Protocols for Email Authentication Optimal Predictive Maintenance Technique for Manufacturing Semiconductors using Machine Learning Development of Secure IoT Ecosystems for Healthcare
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1