Muhammad A. R. Khan, M. Mehedi Hasan Rocky, Md. Ariful Islam, Faisal I Chowdhury, M. Shamsuddin Ahmed, Shamim Akhtar
{"title":"303.15 ~ 323.15 K范围内单烷醇胺与乙腈二元混合物的黏度、自由活化能及其过量性质:实验及相关方法","authors":"Muhammad A. R. Khan, M. Mehedi Hasan Rocky, Md. Ariful Islam, Faisal I Chowdhury, M. Shamsuddin Ahmed, Shamim Akhtar","doi":"10.33736/jaspe.4581.2022","DOIUrl":null,"url":null,"abstract":"Viscosities (h) of three binary non-aqueous systems of ACN + MEA, + MMEA and + MEEA have been measured in the whole range of compositions at temperatures ranging between 303.15 and 323.15 K at an interval of 5 K. At different compositions, deviations in viscosity (Dh), free energy (ΔG‡) of activation for viscous flow along its excess values (ΔG‡E) were calculated from experimental ρ andh data. For all systems, h vs. x2 initially changed very slowly, but with the increment of solute concentration h were found to rise quite rapidly. The values of Dh were largely positive and they formed a sharp maximum invariably at the highly alkanolamine-rich regions. All positive values of Dh followed the increasing order as: ACN + MMEA > ACN + MEA > ACN + MEEA. The order of DG‡E at the maximum point was ACN + MMEA > ACN + MEA > ACN + MEEA. For the correlative model, zero parameter relations: Bingham, Kendall- Munroe, Gambill, and Eyring relations, one parameter relations: Hind, Grunberg-Nissan, Frenkel, Wijk, Katti-Chaudhri, Tamura Kurata and two as well as three parameter-based models: Heric, Ausländer, McAllister (3-body) and McAllister (4-body) Equation and the Jouyban-Acree model (JA) were employed to correlate viscosities. Ausländer equation fit the best for: ACN + MEA. McAlliester 4-body fit the best for ACN + MMEA and ACN + MEEA. All the above results were attempted to be interpreted in terms of the strength and order of self-association, intra- as well as intermolecular hydrogen bonding via OH···O or OH···N and the effect due to steric hindrance of the concerned alkanolamine molecules and interstitial accommodation of ACN into alkanolamine network.","PeriodicalId":159511,"journal":{"name":"Journal of Applied Science & Process Engineering","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Viscosities, Free Energies of Activation and their Excess Properties in the Binary Mixtures of Some Monoalkanolamines with Acetonitrile between 303.15 and 323.15 K: Experimental and Correlative Approach\",\"authors\":\"Muhammad A. R. Khan, M. Mehedi Hasan Rocky, Md. Ariful Islam, Faisal I Chowdhury, M. Shamsuddin Ahmed, Shamim Akhtar\",\"doi\":\"10.33736/jaspe.4581.2022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Viscosities (h) of three binary non-aqueous systems of ACN + MEA, + MMEA and + MEEA have been measured in the whole range of compositions at temperatures ranging between 303.15 and 323.15 K at an interval of 5 K. At different compositions, deviations in viscosity (Dh), free energy (ΔG‡) of activation for viscous flow along its excess values (ΔG‡E) were calculated from experimental ρ andh data. For all systems, h vs. x2 initially changed very slowly, but with the increment of solute concentration h were found to rise quite rapidly. The values of Dh were largely positive and they formed a sharp maximum invariably at the highly alkanolamine-rich regions. All positive values of Dh followed the increasing order as: ACN + MMEA > ACN + MEA > ACN + MEEA. The order of DG‡E at the maximum point was ACN + MMEA > ACN + MEA > ACN + MEEA. For the correlative model, zero parameter relations: Bingham, Kendall- Munroe, Gambill, and Eyring relations, one parameter relations: Hind, Grunberg-Nissan, Frenkel, Wijk, Katti-Chaudhri, Tamura Kurata and two as well as three parameter-based models: Heric, Ausländer, McAllister (3-body) and McAllister (4-body) Equation and the Jouyban-Acree model (JA) were employed to correlate viscosities. Ausländer equation fit the best for: ACN + MEA. McAlliester 4-body fit the best for ACN + MMEA and ACN + MEEA. All the above results were attempted to be interpreted in terms of the strength and order of self-association, intra- as well as intermolecular hydrogen bonding via OH···O or OH···N and the effect due to steric hindrance of the concerned alkanolamine molecules and interstitial accommodation of ACN into alkanolamine network.\",\"PeriodicalId\":159511,\"journal\":{\"name\":\"Journal of Applied Science & Process Engineering\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Science & Process Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33736/jaspe.4581.2022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Science & Process Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33736/jaspe.4581.2022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Viscosities, Free Energies of Activation and their Excess Properties in the Binary Mixtures of Some Monoalkanolamines with Acetonitrile between 303.15 and 323.15 K: Experimental and Correlative Approach
Viscosities (h) of three binary non-aqueous systems of ACN + MEA, + MMEA and + MEEA have been measured in the whole range of compositions at temperatures ranging between 303.15 and 323.15 K at an interval of 5 K. At different compositions, deviations in viscosity (Dh), free energy (ΔG‡) of activation for viscous flow along its excess values (ΔG‡E) were calculated from experimental ρ andh data. For all systems, h vs. x2 initially changed very slowly, but with the increment of solute concentration h were found to rise quite rapidly. The values of Dh were largely positive and they formed a sharp maximum invariably at the highly alkanolamine-rich regions. All positive values of Dh followed the increasing order as: ACN + MMEA > ACN + MEA > ACN + MEEA. The order of DG‡E at the maximum point was ACN + MMEA > ACN + MEA > ACN + MEEA. For the correlative model, zero parameter relations: Bingham, Kendall- Munroe, Gambill, and Eyring relations, one parameter relations: Hind, Grunberg-Nissan, Frenkel, Wijk, Katti-Chaudhri, Tamura Kurata and two as well as three parameter-based models: Heric, Ausländer, McAllister (3-body) and McAllister (4-body) Equation and the Jouyban-Acree model (JA) were employed to correlate viscosities. Ausländer equation fit the best for: ACN + MEA. McAlliester 4-body fit the best for ACN + MMEA and ACN + MEEA. All the above results were attempted to be interpreted in terms of the strength and order of self-association, intra- as well as intermolecular hydrogen bonding via OH···O or OH···N and the effect due to steric hindrance of the concerned alkanolamine molecules and interstitial accommodation of ACN into alkanolamine network.