利用正交随机矩阵实现MBAT向量符号体系结构中的“问答”

M. Tissera, M. McDonnell
{"title":"利用正交随机矩阵实现MBAT向量符号体系结构中的“问答”","authors":"M. Tissera, M. McDonnell","doi":"10.1109/ICSC.2014.38","DOIUrl":null,"url":null,"abstract":"Vector Symbolic Architectures (VSA) are methods designed to enable distributed representation and manipulation of semantically-structured information, such as natural languages. Recently, a new VSA based on multiplication of distributed vectors by random matrices was proposed, this is known as Matrix-Binding-of-Additive-Terms (MBAT). We propose an enhancement that introduces an important additional feature to MBAT: the ability to 'unbind' symbols. We show that our method, which exploits the inherent properties of orthogonal matrices, imparts MBAT with the 'question answering' ability found in other VSAs. We compare our results with another popular VSA that was recently demonstrated to have high utility in brain-inspired machine learning applications.","PeriodicalId":175352,"journal":{"name":"2014 IEEE International Conference on Semantic Computing","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Enabling 'Question Answering' in the MBAT Vector Symbolic Architecture by Exploiting Orthogonal Random Matrices\",\"authors\":\"M. Tissera, M. McDonnell\",\"doi\":\"10.1109/ICSC.2014.38\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vector Symbolic Architectures (VSA) are methods designed to enable distributed representation and manipulation of semantically-structured information, such as natural languages. Recently, a new VSA based on multiplication of distributed vectors by random matrices was proposed, this is known as Matrix-Binding-of-Additive-Terms (MBAT). We propose an enhancement that introduces an important additional feature to MBAT: the ability to 'unbind' symbols. We show that our method, which exploits the inherent properties of orthogonal matrices, imparts MBAT with the 'question answering' ability found in other VSAs. We compare our results with another popular VSA that was recently demonstrated to have high utility in brain-inspired machine learning applications.\",\"PeriodicalId\":175352,\"journal\":{\"name\":\"2014 IEEE International Conference on Semantic Computing\",\"volume\":\"93 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Semantic Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSC.2014.38\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Semantic Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSC.2014.38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

向量符号体系结构(Vector Symbolic Architectures, VSA)是一种旨在支持分布式表示和操作语义结构化信息(如自然语言)的方法。近年来,提出了一种基于随机矩阵与分布向量相乘的VSA,称为矩阵加项绑定(Matrix-Binding-of-Additive-Terms, MBAT)。我们提出了一个增强,为MBAT引入了一个重要的附加功能:“解绑定”符号的能力。我们表明,我们的方法利用正交矩阵的固有特性,赋予MBAT在其他vsa中发现的“问答”能力。我们将我们的结果与另一个流行的VSA进行了比较,该VSA最近被证明在大脑启发的机器学习应用中具有很高的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enabling 'Question Answering' in the MBAT Vector Symbolic Architecture by Exploiting Orthogonal Random Matrices
Vector Symbolic Architectures (VSA) are methods designed to enable distributed representation and manipulation of semantically-structured information, such as natural languages. Recently, a new VSA based on multiplication of distributed vectors by random matrices was proposed, this is known as Matrix-Binding-of-Additive-Terms (MBAT). We propose an enhancement that introduces an important additional feature to MBAT: the ability to 'unbind' symbols. We show that our method, which exploits the inherent properties of orthogonal matrices, imparts MBAT with the 'question answering' ability found in other VSAs. We compare our results with another popular VSA that was recently demonstrated to have high utility in brain-inspired machine learning applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fulgeo -- Towards an Intuitive User Interface for a Semantics-Enabled Multimedia Search Engine Refinement of Ontology-Constrained Human Pose Classification "Units of Meaning" in Medical Documents: Natural Language Processing Perspective Enhancing Multimedia Semantic Concept Mining and Retrieval by Incorporating Negative Correlations Cloud Resource Auto-scaling System Based on Hidden Markov Model (HMM)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1