用于人脸检测的彩色图像到灰度图像的转换

Juwei Lu, K. Plataniotis
{"title":"用于人脸检测的彩色图像到灰度图像的转换","authors":"Juwei Lu, K. Plataniotis","doi":"10.1109/CVPRW.2009.5204297","DOIUrl":null,"url":null,"abstract":"The paper presents a study on color to gray image conversion from a novel point of view: face detection. To the best knowledge of the authors, research in such a specific topic has not been conducted before. Our work reveals that the standard NTSC conversion is not optimal for face detection tasks, although it may be the best for use to display pictures on monochrome televisions. It is further found experimentally with two AdaBoost-based face detection systems that the detect rates may vary up to 10% by simply changing the parameters of the RGB to Gray conversion. On the other hand, the change has little influence on the false positive rates. Compared to the standard NTSC conversion, the detect rate with the best found parameter setting is 2.85% and 3.58% higher for the two evaluated face detection systems. Promisingly, the work suggests a new solution to the color to gray conversion. It could be extremely easy to be incorporated into most existing face detection systems for accuracy improvement without introduction of any extra cost in computational complexity.","PeriodicalId":431981,"journal":{"name":"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"On conversion from color to gray-scale images for face detection\",\"authors\":\"Juwei Lu, K. Plataniotis\",\"doi\":\"10.1109/CVPRW.2009.5204297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents a study on color to gray image conversion from a novel point of view: face detection. To the best knowledge of the authors, research in such a specific topic has not been conducted before. Our work reveals that the standard NTSC conversion is not optimal for face detection tasks, although it may be the best for use to display pictures on monochrome televisions. It is further found experimentally with two AdaBoost-based face detection systems that the detect rates may vary up to 10% by simply changing the parameters of the RGB to Gray conversion. On the other hand, the change has little influence on the false positive rates. Compared to the standard NTSC conversion, the detect rate with the best found parameter setting is 2.85% and 3.58% higher for the two evaluated face detection systems. Promisingly, the work suggests a new solution to the color to gray conversion. It could be extremely easy to be incorporated into most existing face detection systems for accuracy improvement without introduction of any extra cost in computational complexity.\",\"PeriodicalId\":431981,\"journal\":{\"name\":\"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPRW.2009.5204297\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2009.5204297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

本文从一个新的角度——人脸检测——研究了彩色图像到灰度图像的转换。据作者所知,在这样一个特定主题的研究之前还没有进行过。我们的研究表明,标准的NTSC转换并不是人脸检测任务的最佳选择,尽管它可能是单色电视上显示图片的最佳选择。通过两个基于adaboost的人脸检测系统的实验进一步发现,通过简单地改变RGB到Gray转换的参数,检测率可以变化高达10%。另一方面,这种变化对假阳性率的影响很小。与标准NTSC转换相比,两种被评估的人脸检测系统在最佳发现参数设置下的检测率分别高出2.85%和3.58%。有希望的是,这项工作提出了一种新的解决方案,以颜色到灰色的转换。它可以非常容易地整合到大多数现有的人脸检测系统中,以提高准确性,而不会引入任何额外的计算复杂性成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On conversion from color to gray-scale images for face detection
The paper presents a study on color to gray image conversion from a novel point of view: face detection. To the best knowledge of the authors, research in such a specific topic has not been conducted before. Our work reveals that the standard NTSC conversion is not optimal for face detection tasks, although it may be the best for use to display pictures on monochrome televisions. It is further found experimentally with two AdaBoost-based face detection systems that the detect rates may vary up to 10% by simply changing the parameters of the RGB to Gray conversion. On the other hand, the change has little influence on the false positive rates. Compared to the standard NTSC conversion, the detect rate with the best found parameter setting is 2.85% and 3.58% higher for the two evaluated face detection systems. Promisingly, the work suggests a new solution to the color to gray conversion. It could be extremely easy to be incorporated into most existing face detection systems for accuracy improvement without introduction of any extra cost in computational complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust real-time 3D modeling of static scenes using solely a Time-of-Flight sensor Image matching in large scale indoor environment Learning to segment using machine-learned penalized logistic models Modeling and exploiting the spatio-temporal facial action dependencies for robust spontaneous facial expression recognition Fuzzy statistical modeling of dynamic backgrounds for moving object detection in infrared videos
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1