M. Baskaran, Benoît Meister, Nicolas Vasilache, R. Lethin
{"title":"稀疏张量的高效可伸缩计算","authors":"M. Baskaran, Benoît Meister, Nicolas Vasilache, R. Lethin","doi":"10.1109/HPEC.2012.6408676","DOIUrl":null,"url":null,"abstract":"For applications that deal with large amounts of high dimensional multi-aspect data, it becomes natural to represent such data as tensors or multi-way arrays. Multi-linear algebraic computations such as tensor decompositions are performed for summarization and analysis of such data. Their use in real-world applications can span across domains such as signal processing, data mining, computer vision, and graph analysis. The major challenges with applying tensor decompositions in real-world applications are (1) dealing with large-scale high dimensional data and (2) dealing with sparse data. In this paper, we address these challenges in applying tensor decompositions in real data analytic applications. We describe new sparse tensor storage formats that provide storage benefits and are flexible and efficient for performing tensor computations. Further, we propose an optimization that improves data reuse and reduces redundant or unnecessary computations in tensor decomposition algorithms. Furthermore, we couple our data reuse optimization and the benefits of our sparse tensor storage formats to provide a memory-efficient scalable solution for handling large-scale sparse tensor computations. We demonstrate improved performance and address memory scalability using our techniques on both synthetic small data sets and large-scale sparse real data sets.","PeriodicalId":193020,"journal":{"name":"2012 IEEE Conference on High Performance Extreme Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"63","resultStr":"{\"title\":\"Efficient and scalable computations with sparse tensors\",\"authors\":\"M. Baskaran, Benoît Meister, Nicolas Vasilache, R. Lethin\",\"doi\":\"10.1109/HPEC.2012.6408676\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For applications that deal with large amounts of high dimensional multi-aspect data, it becomes natural to represent such data as tensors or multi-way arrays. Multi-linear algebraic computations such as tensor decompositions are performed for summarization and analysis of such data. Their use in real-world applications can span across domains such as signal processing, data mining, computer vision, and graph analysis. The major challenges with applying tensor decompositions in real-world applications are (1) dealing with large-scale high dimensional data and (2) dealing with sparse data. In this paper, we address these challenges in applying tensor decompositions in real data analytic applications. We describe new sparse tensor storage formats that provide storage benefits and are flexible and efficient for performing tensor computations. Further, we propose an optimization that improves data reuse and reduces redundant or unnecessary computations in tensor decomposition algorithms. Furthermore, we couple our data reuse optimization and the benefits of our sparse tensor storage formats to provide a memory-efficient scalable solution for handling large-scale sparse tensor computations. We demonstrate improved performance and address memory scalability using our techniques on both synthetic small data sets and large-scale sparse real data sets.\",\"PeriodicalId\":193020,\"journal\":{\"name\":\"2012 IEEE Conference on High Performance Extreme Computing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"63\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Conference on High Performance Extreme Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPEC.2012.6408676\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Conference on High Performance Extreme Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC.2012.6408676","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Efficient and scalable computations with sparse tensors
For applications that deal with large amounts of high dimensional multi-aspect data, it becomes natural to represent such data as tensors or multi-way arrays. Multi-linear algebraic computations such as tensor decompositions are performed for summarization and analysis of such data. Their use in real-world applications can span across domains such as signal processing, data mining, computer vision, and graph analysis. The major challenges with applying tensor decompositions in real-world applications are (1) dealing with large-scale high dimensional data and (2) dealing with sparse data. In this paper, we address these challenges in applying tensor decompositions in real data analytic applications. We describe new sparse tensor storage formats that provide storage benefits and are flexible and efficient for performing tensor computations. Further, we propose an optimization that improves data reuse and reduces redundant or unnecessary computations in tensor decomposition algorithms. Furthermore, we couple our data reuse optimization and the benefits of our sparse tensor storage formats to provide a memory-efficient scalable solution for handling large-scale sparse tensor computations. We demonstrate improved performance and address memory scalability using our techniques on both synthetic small data sets and large-scale sparse real data sets.