G. Dias, Sebastião Pais, K. Wegrzyn-Wolska, R. Mahl
{"title":"基于信息不对称度量和多词单元识别的文本蕴涵识别","authors":"G. Dias, Sebastião Pais, K. Wegrzyn-Wolska, R. Mahl","doi":"10.1109/WI-IAT.2011.122","DOIUrl":null,"url":null,"abstract":"In the context of Ephemeral Clustering of web Pages, it can be interesting to label each cluster with a small summary instead of just a label. Within this scope, we introduce the paradigm of Textual Entailment by Generality, which can be defined as the entailment from a specific web snippet towards a more general web snippet. The subjacent idea is to find the best web snippet, which summarizes and subsumes all the other web snippets within an ephemeral cluster. To reach this objective, we first propose a new informative asymmetric similarity measure called the Simplified Asymmetric InfoSimba(AISs), which can be combined with different asymmetric association measures. In particular, the AISs proposes an unsupervised language-independent solution to infer Textual Entailment by Generality and as such can help to encounter the web snippet with maximum semantic coverage. This new methodology is tested against the first Recognizing Textual Entailment data set (RTE-1)1 for an exhaustive number of asymmetric association measures with and without the identification of Multiword Units. The comparative experiments with existing state-of-the-art methodologies show promising results.","PeriodicalId":128421,"journal":{"name":"2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Recognizing Textual Entailment by Generality Using Informative Asymmetric Measures and Multiword Unit Identification to Summarize Ephemeral Clusters\",\"authors\":\"G. Dias, Sebastião Pais, K. Wegrzyn-Wolska, R. Mahl\",\"doi\":\"10.1109/WI-IAT.2011.122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the context of Ephemeral Clustering of web Pages, it can be interesting to label each cluster with a small summary instead of just a label. Within this scope, we introduce the paradigm of Textual Entailment by Generality, which can be defined as the entailment from a specific web snippet towards a more general web snippet. The subjacent idea is to find the best web snippet, which summarizes and subsumes all the other web snippets within an ephemeral cluster. To reach this objective, we first propose a new informative asymmetric similarity measure called the Simplified Asymmetric InfoSimba(AISs), which can be combined with different asymmetric association measures. In particular, the AISs proposes an unsupervised language-independent solution to infer Textual Entailment by Generality and as such can help to encounter the web snippet with maximum semantic coverage. This new methodology is tested against the first Recognizing Textual Entailment data set (RTE-1)1 for an exhaustive number of asymmetric association measures with and without the identification of Multiword Units. The comparative experiments with existing state-of-the-art methodologies show promising results.\",\"PeriodicalId\":128421,\"journal\":{\"name\":\"2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WI-IAT.2011.122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI-IAT.2011.122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Recognizing Textual Entailment by Generality Using Informative Asymmetric Measures and Multiword Unit Identification to Summarize Ephemeral Clusters
In the context of Ephemeral Clustering of web Pages, it can be interesting to label each cluster with a small summary instead of just a label. Within this scope, we introduce the paradigm of Textual Entailment by Generality, which can be defined as the entailment from a specific web snippet towards a more general web snippet. The subjacent idea is to find the best web snippet, which summarizes and subsumes all the other web snippets within an ephemeral cluster. To reach this objective, we first propose a new informative asymmetric similarity measure called the Simplified Asymmetric InfoSimba(AISs), which can be combined with different asymmetric association measures. In particular, the AISs proposes an unsupervised language-independent solution to infer Textual Entailment by Generality and as such can help to encounter the web snippet with maximum semantic coverage. This new methodology is tested against the first Recognizing Textual Entailment data set (RTE-1)1 for an exhaustive number of asymmetric association measures with and without the identification of Multiword Units. The comparative experiments with existing state-of-the-art methodologies show promising results.