Dajiang Liu, Ting Liu, Xingyu Mo, Jiaxing Shang, S. Yin
{"title":"基于多面体的CGRAs非完美嵌套循环流水线","authors":"Dajiang Liu, Ting Liu, Xingyu Mo, Jiaxing Shang, S. Yin","doi":"10.1109/ICCAD51958.2021.9643542","DOIUrl":null,"url":null,"abstract":"Coarse-Grained Reconfigurable Architectures (CGRAs) are promising architectures with high energy efficiency and flexibility. The computation-intensive portions of an application (e.g. loops) are often executed on CGRAs for acceleration and modulo scheduling is commonly used for loop mapping. However, for imperfectly-nested loops, existing methods don't fully explore the structure of the loops before performing modulo scheduling, resulting in poor execution performance. To tackle this problem, we propose a polyhedral-based pipelining approach for mapping imperfectly-nested loops on CGRA. By efficiently exploring the transformation space for imperfectly-nested loops using the polyhedral model and taking total execution time as an optimization metric, our approach could improve the execution performance greatly. On a $4\\times 4$ mesh-connected CGRA, the experimental results show that our approach can reduce the total execution time of nested loop by 50.1 % on average, as compared to the state-of-the-art techniques. Moreover, the compilation time is moderate in practice.","PeriodicalId":370791,"journal":{"name":"2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","volume":"181 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Polyhedral-based Pipelining of Imperfectly-Nested Loop for CGRAs\",\"authors\":\"Dajiang Liu, Ting Liu, Xingyu Mo, Jiaxing Shang, S. Yin\",\"doi\":\"10.1109/ICCAD51958.2021.9643542\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Coarse-Grained Reconfigurable Architectures (CGRAs) are promising architectures with high energy efficiency and flexibility. The computation-intensive portions of an application (e.g. loops) are often executed on CGRAs for acceleration and modulo scheduling is commonly used for loop mapping. However, for imperfectly-nested loops, existing methods don't fully explore the structure of the loops before performing modulo scheduling, resulting in poor execution performance. To tackle this problem, we propose a polyhedral-based pipelining approach for mapping imperfectly-nested loops on CGRA. By efficiently exploring the transformation space for imperfectly-nested loops using the polyhedral model and taking total execution time as an optimization metric, our approach could improve the execution performance greatly. On a $4\\\\times 4$ mesh-connected CGRA, the experimental results show that our approach can reduce the total execution time of nested loop by 50.1 % on average, as compared to the state-of-the-art techniques. Moreover, the compilation time is moderate in practice.\",\"PeriodicalId\":370791,\"journal\":{\"name\":\"2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD)\",\"volume\":\"181 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAD51958.2021.9643542\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD51958.2021.9643542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Polyhedral-based Pipelining of Imperfectly-Nested Loop for CGRAs
Coarse-Grained Reconfigurable Architectures (CGRAs) are promising architectures with high energy efficiency and flexibility. The computation-intensive portions of an application (e.g. loops) are often executed on CGRAs for acceleration and modulo scheduling is commonly used for loop mapping. However, for imperfectly-nested loops, existing methods don't fully explore the structure of the loops before performing modulo scheduling, resulting in poor execution performance. To tackle this problem, we propose a polyhedral-based pipelining approach for mapping imperfectly-nested loops on CGRA. By efficiently exploring the transformation space for imperfectly-nested loops using the polyhedral model and taking total execution time as an optimization metric, our approach could improve the execution performance greatly. On a $4\times 4$ mesh-connected CGRA, the experimental results show that our approach can reduce the total execution time of nested loop by 50.1 % on average, as compared to the state-of-the-art techniques. Moreover, the compilation time is moderate in practice.