Apache Spark查询计划Java代码生成分析与优化

K. Ishizaki
{"title":"Apache Spark查询计划Java代码生成分析与优化","authors":"K. Ishizaki","doi":"10.1145/3297663.3310300","DOIUrl":null,"url":null,"abstract":"Big data processing frameworks have received attention because of the importance of high performance computation. They are expected to quickly process a huge amount of data in memory with a simple programming model in a cluster. Apache Spark is becoming one of the most popular frameworks. Several studies have analyzed Spark programs and optimized their performance. Recent versions of Spark generate optimized Java code from a Spark program, but few research works have analyzed and improved such generated code to achieve better performance. Here, two types of problems were analyzed by inspecting generated code, namely, access to column-oriented storage and to a primitive-type array. The resulting performance issues in the generated code and were analyzed, and optimizations that can eliminate inefficient code were devised to solve the issues. The proposed optimizations were then implemented for Spark. Experimental results with the optimizations on a cluster of five Intel machines indicated performance improvement by up to 1.4x for TPC-H queries and by up to 1.4x for machine-learning programs. These optimizations have since been integrated into the release version of Apache Spark 2.3.","PeriodicalId":273447,"journal":{"name":"Proceedings of the 2019 ACM/SPEC International Conference on Performance Engineering","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Analyzing and Optimizing Java Code Generation for Apache Spark Query Plan\",\"authors\":\"K. Ishizaki\",\"doi\":\"10.1145/3297663.3310300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Big data processing frameworks have received attention because of the importance of high performance computation. They are expected to quickly process a huge amount of data in memory with a simple programming model in a cluster. Apache Spark is becoming one of the most popular frameworks. Several studies have analyzed Spark programs and optimized their performance. Recent versions of Spark generate optimized Java code from a Spark program, but few research works have analyzed and improved such generated code to achieve better performance. Here, two types of problems were analyzed by inspecting generated code, namely, access to column-oriented storage and to a primitive-type array. The resulting performance issues in the generated code and were analyzed, and optimizations that can eliminate inefficient code were devised to solve the issues. The proposed optimizations were then implemented for Spark. Experimental results with the optimizations on a cluster of five Intel machines indicated performance improvement by up to 1.4x for TPC-H queries and by up to 1.4x for machine-learning programs. These optimizations have since been integrated into the release version of Apache Spark 2.3.\",\"PeriodicalId\":273447,\"journal\":{\"name\":\"Proceedings of the 2019 ACM/SPEC International Conference on Performance Engineering\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2019 ACM/SPEC International Conference on Performance Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3297663.3310300\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 ACM/SPEC International Conference on Performance Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3297663.3310300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

由于高性能计算的重要性,大数据处理框架受到了关注。它们需要在集群中使用简单的编程模型快速处理内存中的大量数据。Apache Spark正在成为最流行的框架之一。一些研究分析了Spark程序并优化了它们的性能。最近的Spark版本从Spark程序生成优化的Java代码,但很少有研究工作分析和改进这些生成的代码以获得更好的性能。这里,通过检查生成的代码分析了两种类型的问题,即访问面向列的存储和访问基元类型数组。分析了生成的代码中产生的性能问题,并设计了可以消除低效代码的优化来解决问题。然后在Spark上实现了建议的优化。在五台英特尔机器的集群上进行优化的实验结果表明,TPC-H查询的性能提高了1.4倍,机器学习程序的性能提高了1.4倍。这些优化已经集成到Apache Spark 2.3的发布版本中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analyzing and Optimizing Java Code Generation for Apache Spark Query Plan
Big data processing frameworks have received attention because of the importance of high performance computation. They are expected to quickly process a huge amount of data in memory with a simple programming model in a cluster. Apache Spark is becoming one of the most popular frameworks. Several studies have analyzed Spark programs and optimized their performance. Recent versions of Spark generate optimized Java code from a Spark program, but few research works have analyzed and improved such generated code to achieve better performance. Here, two types of problems were analyzed by inspecting generated code, namely, access to column-oriented storage and to a primitive-type array. The resulting performance issues in the generated code and were analyzed, and optimizations that can eliminate inefficient code were devised to solve the issues. The proposed optimizations were then implemented for Spark. Experimental results with the optimizations on a cluster of five Intel machines indicated performance improvement by up to 1.4x for TPC-H queries and by up to 1.4x for machine-learning programs. These optimizations have since been integrated into the release version of Apache Spark 2.3.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance Evaluation of Multi-Path TCP for Data Center and Cloud Workloads Cachematic - Automatic Invalidation in Application-Level Caching Systems Memory Centric Characterization and Analysis of SPEC CPU2017 Suite Evaluating Characteristics of CUDA Communication Primitives on High-Bandwidth Interconnects Yardstick: A Benchmark for Minecraft-like Services
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1