利用鸡群优化技术提取太阳能光伏组件参数

Abhishek Sharma, R. Pachauri, Abhinav Sharma, N. Raj
{"title":"利用鸡群优化技术提取太阳能光伏组件参数","authors":"Abhishek Sharma, R. Pachauri, Abhinav Sharma, N. Raj","doi":"10.1109/WITCONECE48374.2019.9092938","DOIUrl":null,"url":null,"abstract":"Solar PV array parameter extraction is an active area of research in the field of renewable energy. In this article a new metaheuristic approach, chicken swarm optimization (CSO) is explored for solar PV array parameter extraction. Five parameters of the solar PV module have been extracted in MATLAB software using chicken swarm optimization and the results are compared with culture algorithm (CA). The simulation results show that CSO algorithm is a robust algorithm and outperforms culture algorithm in terms of RMSE.","PeriodicalId":350816,"journal":{"name":"2019 Women Institute of Technology Conference on Electrical and Computer Engineering (WITCON ECE)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Extraction of the solar PV module parameters using chicken swarm optimization technique\",\"authors\":\"Abhishek Sharma, R. Pachauri, Abhinav Sharma, N. Raj\",\"doi\":\"10.1109/WITCONECE48374.2019.9092938\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solar PV array parameter extraction is an active area of research in the field of renewable energy. In this article a new metaheuristic approach, chicken swarm optimization (CSO) is explored for solar PV array parameter extraction. Five parameters of the solar PV module have been extracted in MATLAB software using chicken swarm optimization and the results are compared with culture algorithm (CA). The simulation results show that CSO algorithm is a robust algorithm and outperforms culture algorithm in terms of RMSE.\",\"PeriodicalId\":350816,\"journal\":{\"name\":\"2019 Women Institute of Technology Conference on Electrical and Computer Engineering (WITCON ECE)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Women Institute of Technology Conference on Electrical and Computer Engineering (WITCON ECE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WITCONECE48374.2019.9092938\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Women Institute of Technology Conference on Electrical and Computer Engineering (WITCON ECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WITCONECE48374.2019.9092938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

太阳能光伏阵列参数提取是可再生能源领域的一个研究热点。本文探讨了一种新的元启发式方法——鸡群优化算法(CSO)用于太阳能光伏阵列参数提取。利用MATLAB软件对太阳能光伏组件的5个参数进行了鸡群优化提取,并与培养算法(CA)进行了比较。仿真结果表明,CSO算法是一种鲁棒算法,在RMSE方面优于文化算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Extraction of the solar PV module parameters using chicken swarm optimization technique
Solar PV array parameter extraction is an active area of research in the field of renewable energy. In this article a new metaheuristic approach, chicken swarm optimization (CSO) is explored for solar PV array parameter extraction. Five parameters of the solar PV module have been extracted in MATLAB software using chicken swarm optimization and the results are compared with culture algorithm (CA). The simulation results show that CSO algorithm is a robust algorithm and outperforms culture algorithm in terms of RMSE.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Study of Emerging Areas in Adoption of Blockchain Technology and it’s Prospective Challenges in India A Hybrid Approach for Effective ImageDeduplication Using PCA, SPIHT and Compressive Sensing Extreme Learning Machine Approach for Prediction of Forest Fires using Topographical and Metrological Data of Vietnam WITCON ECE 2019 Advisory Committee Bad Data Processing in Electrical Power System using Binary Particle Swarm Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1