模拟《超级马里奥兄弟》中的玩家体验

Chris Pedersen, J. Togelius, Georgios N. Yannakakis
{"title":"模拟《超级马里奥兄弟》中的玩家体验","authors":"Chris Pedersen, J. Togelius, Georgios N. Yannakakis","doi":"10.1109/CIG.2009.5286482","DOIUrl":null,"url":null,"abstract":"This paper investigates the relationship between level design parameters of platform games, individual playing characteristics and player experience. The investigated design parameters relate to the placement and sizes of gaps in the level and the existence of direction changes; components of player experience include fun, frustration and challenge. A neural network model that maps between level design parameters, playing behavior characteristics and player reported emotions is trained using evolutionary preference learning and data from 480 platform game sessions. Results show that challenge and frustration can be predicted with a high accuracy (77.77% and 88.66% respectively) via a simple single-neuron model whereas model accuracy for fun (69.18%) suggests the use of more complex non-linear approximators for this emotion. The paper concludes with a discussion on how the obtained models can be utilized to automatically generate game levels which will enhance player experience.","PeriodicalId":358795,"journal":{"name":"2009 IEEE Symposium on Computational Intelligence and Games","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"187","resultStr":"{\"title\":\"Modeling player experience in Super Mario Bros\",\"authors\":\"Chris Pedersen, J. Togelius, Georgios N. Yannakakis\",\"doi\":\"10.1109/CIG.2009.5286482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the relationship between level design parameters of platform games, individual playing characteristics and player experience. The investigated design parameters relate to the placement and sizes of gaps in the level and the existence of direction changes; components of player experience include fun, frustration and challenge. A neural network model that maps between level design parameters, playing behavior characteristics and player reported emotions is trained using evolutionary preference learning and data from 480 platform game sessions. Results show that challenge and frustration can be predicted with a high accuracy (77.77% and 88.66% respectively) via a simple single-neuron model whereas model accuracy for fun (69.18%) suggests the use of more complex non-linear approximators for this emotion. The paper concludes with a discussion on how the obtained models can be utilized to automatically generate game levels which will enhance player experience.\",\"PeriodicalId\":358795,\"journal\":{\"name\":\"2009 IEEE Symposium on Computational Intelligence and Games\",\"volume\":\"107 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"187\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Symposium on Computational Intelligence and Games\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIG.2009.5286482\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Symposium on Computational Intelligence and Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIG.2009.5286482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 187

摘要

本文探讨了平台游戏的关卡设计参数、个人游戏特征和玩家体验之间的关系。所研究的设计参数与水平间隙的位置和大小以及方向变化的存在有关;玩家体验的组成部分包括乐趣、挫败感和挑战。一个映射关卡设计参数、游戏行为特征和玩家情绪的神经网络模型是使用进化偏好学习和来自480个平台游戏会话的数据进行训练的。结果表明,通过一个简单的单神经元模型,挑战和沮丧可以以较高的准确率(分别为77.77%和88.66%)预测,而乐趣的模型准确率(69.18%)表明使用更复杂的非线性近似器来预测这种情绪。本文最后讨论了如何利用所获得的模型来自动生成游戏关卡,从而增强玩家体验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling player experience in Super Mario Bros
This paper investigates the relationship between level design parameters of platform games, individual playing characteristics and player experience. The investigated design parameters relate to the placement and sizes of gaps in the level and the existence of direction changes; components of player experience include fun, frustration and challenge. A neural network model that maps between level design parameters, playing behavior characteristics and player reported emotions is trained using evolutionary preference learning and data from 480 platform game sessions. Results show that challenge and frustration can be predicted with a high accuracy (77.77% and 88.66% respectively) via a simple single-neuron model whereas model accuracy for fun (69.18%) suggests the use of more complex non-linear approximators for this emotion. The paper concludes with a discussion on how the obtained models can be utilized to automatically generate game levels which will enhance player experience.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal strategy selection of non-player character on real time strategy game using a speciated evolutionary algorithm Formal analysis and algorithms for extracting coordinate systems of games Evolving driving controllers using Genetic Programming CHANCEPROBCUT: Forward pruning in chance nodes Evolving coordinated spatial tactics for autonomous entities using influence maps
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1