空间计算系统中生物启发的环境协调

Justin Werfel, Y. Bar-Yam, D. Ingber
{"title":"空间计算系统中生物启发的环境协调","authors":"Justin Werfel, Y. Bar-Yam, D. Ingber","doi":"10.1109/SASOW.2008.15","DOIUrl":null,"url":null,"abstract":"Spatial computing systems are characterized by the extended physical environment in which they exist and function. Often this environment can be manipulated in various ways by the computing agents. We argue that it is important to consider the potential use of the environment for coordination and indirect communication in such systems. For inherently spatial problems, it can be more effective to store spatially relevant information in the environment rather than in the computing devices, as in the case of mobile agents or long-term physical structures. In scientific settings, considering the role of the environment can illuminate mechanisms or processes that might otherwise be overlooked; in engineering problems, it can provide simpler and more effective solutions than could be achieved by relying on the computing devices alone. We give as examples problems related to foraging, collective construction, simultaneous localization and mapping, object tracking, and behaviors of living tissues. We suggest in closing a classification scheme for capabilities of environmental elements, relevant to the design of physically embodied spatial computing systems.","PeriodicalId":447279,"journal":{"name":"2008 Second IEEE International Conference on Self-Adaptive and Self-Organizing Systems Workshops","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Bioinspired Environmental Coordination in Spatial Computing Systems\",\"authors\":\"Justin Werfel, Y. Bar-Yam, D. Ingber\",\"doi\":\"10.1109/SASOW.2008.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spatial computing systems are characterized by the extended physical environment in which they exist and function. Often this environment can be manipulated in various ways by the computing agents. We argue that it is important to consider the potential use of the environment for coordination and indirect communication in such systems. For inherently spatial problems, it can be more effective to store spatially relevant information in the environment rather than in the computing devices, as in the case of mobile agents or long-term physical structures. In scientific settings, considering the role of the environment can illuminate mechanisms or processes that might otherwise be overlooked; in engineering problems, it can provide simpler and more effective solutions than could be achieved by relying on the computing devices alone. We give as examples problems related to foraging, collective construction, simultaneous localization and mapping, object tracking, and behaviors of living tissues. We suggest in closing a classification scheme for capabilities of environmental elements, relevant to the design of physically embodied spatial computing systems.\",\"PeriodicalId\":447279,\"journal\":{\"name\":\"2008 Second IEEE International Conference on Self-Adaptive and Self-Organizing Systems Workshops\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Second IEEE International Conference on Self-Adaptive and Self-Organizing Systems Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SASOW.2008.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Second IEEE International Conference on Self-Adaptive and Self-Organizing Systems Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SASOW.2008.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

空间计算系统的特点是其存在和运行的扩展物理环境。通常,计算代理可以以各种方式操纵这个环境。我们认为,在这样的系统中,考虑环境对协调和间接通信的潜在用途是很重要的。对于固有的空间问题,将空间相关信息存储在环境中比存储在计算设备中更有效,比如移动代理或长期物理结构。在科学环境中,考虑环境的作用可以阐明否则可能被忽视的机制或过程;在工程问题中,它可以提供比单独依靠计算设备更简单、更有效的解决方案。我们给出了与觅食、集体构建、同时定位和映射、目标跟踪和活组织行为相关的问题作为例子。最后,我们建议对与物理具体化空间计算系统设计相关的环境要素的能力进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bioinspired Environmental Coordination in Spatial Computing Systems
Spatial computing systems are characterized by the extended physical environment in which they exist and function. Often this environment can be manipulated in various ways by the computing agents. We argue that it is important to consider the potential use of the environment for coordination and indirect communication in such systems. For inherently spatial problems, it can be more effective to store spatially relevant information in the environment rather than in the computing devices, as in the case of mobile agents or long-term physical structures. In scientific settings, considering the role of the environment can illuminate mechanisms or processes that might otherwise be overlooked; in engineering problems, it can provide simpler and more effective solutions than could be achieved by relying on the computing devices alone. We give as examples problems related to foraging, collective construction, simultaneous localization and mapping, object tracking, and behaviors of living tissues. We suggest in closing a classification scheme for capabilities of environmental elements, relevant to the design of physically embodied spatial computing systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Using Global Information for Load Balancing in DHTs Self-Adaptive Selective Sensor Network Querying MyP2PWorld: Highly Reproducible Application-Level Emulation of P2P Systems Arti?cial Ontogeny for Truss Structure Design An Ecological Perspective on Future Service Environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1