{"title":"空间计算系统中生物启发的环境协调","authors":"Justin Werfel, Y. Bar-Yam, D. Ingber","doi":"10.1109/SASOW.2008.15","DOIUrl":null,"url":null,"abstract":"Spatial computing systems are characterized by the extended physical environment in which they exist and function. Often this environment can be manipulated in various ways by the computing agents. We argue that it is important to consider the potential use of the environment for coordination and indirect communication in such systems. For inherently spatial problems, it can be more effective to store spatially relevant information in the environment rather than in the computing devices, as in the case of mobile agents or long-term physical structures. In scientific settings, considering the role of the environment can illuminate mechanisms or processes that might otherwise be overlooked; in engineering problems, it can provide simpler and more effective solutions than could be achieved by relying on the computing devices alone. We give as examples problems related to foraging, collective construction, simultaneous localization and mapping, object tracking, and behaviors of living tissues. We suggest in closing a classification scheme for capabilities of environmental elements, relevant to the design of physically embodied spatial computing systems.","PeriodicalId":447279,"journal":{"name":"2008 Second IEEE International Conference on Self-Adaptive and Self-Organizing Systems Workshops","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Bioinspired Environmental Coordination in Spatial Computing Systems\",\"authors\":\"Justin Werfel, Y. Bar-Yam, D. Ingber\",\"doi\":\"10.1109/SASOW.2008.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spatial computing systems are characterized by the extended physical environment in which they exist and function. Often this environment can be manipulated in various ways by the computing agents. We argue that it is important to consider the potential use of the environment for coordination and indirect communication in such systems. For inherently spatial problems, it can be more effective to store spatially relevant information in the environment rather than in the computing devices, as in the case of mobile agents or long-term physical structures. In scientific settings, considering the role of the environment can illuminate mechanisms or processes that might otherwise be overlooked; in engineering problems, it can provide simpler and more effective solutions than could be achieved by relying on the computing devices alone. We give as examples problems related to foraging, collective construction, simultaneous localization and mapping, object tracking, and behaviors of living tissues. We suggest in closing a classification scheme for capabilities of environmental elements, relevant to the design of physically embodied spatial computing systems.\",\"PeriodicalId\":447279,\"journal\":{\"name\":\"2008 Second IEEE International Conference on Self-Adaptive and Self-Organizing Systems Workshops\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Second IEEE International Conference on Self-Adaptive and Self-Organizing Systems Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SASOW.2008.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Second IEEE International Conference on Self-Adaptive and Self-Organizing Systems Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SASOW.2008.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bioinspired Environmental Coordination in Spatial Computing Systems
Spatial computing systems are characterized by the extended physical environment in which they exist and function. Often this environment can be manipulated in various ways by the computing agents. We argue that it is important to consider the potential use of the environment for coordination and indirect communication in such systems. For inherently spatial problems, it can be more effective to store spatially relevant information in the environment rather than in the computing devices, as in the case of mobile agents or long-term physical structures. In scientific settings, considering the role of the environment can illuminate mechanisms or processes that might otherwise be overlooked; in engineering problems, it can provide simpler and more effective solutions than could be achieved by relying on the computing devices alone. We give as examples problems related to foraging, collective construction, simultaneous localization and mapping, object tracking, and behaviors of living tissues. We suggest in closing a classification scheme for capabilities of environmental elements, relevant to the design of physically embodied spatial computing systems.