网联自动驾驶车辆高效归并机动的柔性策略

N. Chen, M. Wang, T. Alkim, B. Arem
{"title":"网联自动驾驶车辆高效归并机动的柔性策略","authors":"N. Chen, M. Wang, T. Alkim, B. Arem","doi":"10.1061/9780784481523.005","DOIUrl":null,"url":null,"abstract":"Merging is a challenging task for automated vehicles. This paper proposes a strategy for connected automated vehicles (CAVs) to guide merging on-ramp vehicles efficiently while ensuring safe interactions with the mainline vehicles. Point-mass kinematic models are used to describe 2-D vehicle motion and receding horizon control is used to generate optimal trajectories of interacting vehicles. The strategy determines the optimal merging time instant for merging vehicles and acceleration of all involved vehicles to minimize deviation from the preceding vehicles' speed, deviation from preferred inter-vehicle gaps, accelerations, and the time spent merging. The strategy builds on a pre-determined order of vehicles passing the conflict zone but is not restricted to fixed merging points as previous research assumes. It resembles human-like behavior in the sense that on-ramp vehicles will accept smaller gaps when approaching the end of the acceleration lane. The performance of the strategy is demonstrated in simulations.","PeriodicalId":440725,"journal":{"name":"CICTP 2018","volume":"121 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A Flexible Strategy for Efficient Merging Maneuvers of Connected Automated Vehicles\",\"authors\":\"N. Chen, M. Wang, T. Alkim, B. Arem\",\"doi\":\"10.1061/9780784481523.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Merging is a challenging task for automated vehicles. This paper proposes a strategy for connected automated vehicles (CAVs) to guide merging on-ramp vehicles efficiently while ensuring safe interactions with the mainline vehicles. Point-mass kinematic models are used to describe 2-D vehicle motion and receding horizon control is used to generate optimal trajectories of interacting vehicles. The strategy determines the optimal merging time instant for merging vehicles and acceleration of all involved vehicles to minimize deviation from the preceding vehicles' speed, deviation from preferred inter-vehicle gaps, accelerations, and the time spent merging. The strategy builds on a pre-determined order of vehicles passing the conflict zone but is not restricted to fixed merging points as previous research assumes. It resembles human-like behavior in the sense that on-ramp vehicles will accept smaller gaps when approaching the end of the acceleration lane. The performance of the strategy is demonstrated in simulations.\",\"PeriodicalId\":440725,\"journal\":{\"name\":\"CICTP 2018\",\"volume\":\"121 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CICTP 2018\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1061/9780784481523.005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CICTP 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1061/9780784481523.005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

对于自动驾驶汽车来说,合并是一项具有挑战性的任务。本文提出了一种网联自动驾驶汽车在保证与主干线车辆安全交互的同时,有效引导匝道车辆归并的策略。采用点质量运动学模型来描述车辆的二维运动,并采用后退水平控制来生成相互作用车辆的最优轨迹。该策略确定了合并车辆的最优合并时刻和所有参与车辆的加速度,以最大限度地减少与前车速度的偏差、与优选车间距的偏差、加速度和合并时间。该策略建立在预先确定的车辆通过冲突区域的顺序上,但不像以前的研究假设的那样局限于固定的合并点。从某种意义上说,它类似于人类的行为,即匝道车辆在接近加速车道终点时将接受更小的间隙。仿真结果验证了该策略的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Flexible Strategy for Efficient Merging Maneuvers of Connected Automated Vehicles
Merging is a challenging task for automated vehicles. This paper proposes a strategy for connected automated vehicles (CAVs) to guide merging on-ramp vehicles efficiently while ensuring safe interactions with the mainline vehicles. Point-mass kinematic models are used to describe 2-D vehicle motion and receding horizon control is used to generate optimal trajectories of interacting vehicles. The strategy determines the optimal merging time instant for merging vehicles and acceleration of all involved vehicles to minimize deviation from the preceding vehicles' speed, deviation from preferred inter-vehicle gaps, accelerations, and the time spent merging. The strategy builds on a pre-determined order of vehicles passing the conflict zone but is not restricted to fixed merging points as previous research assumes. It resembles human-like behavior in the sense that on-ramp vehicles will accept smaller gaps when approaching the end of the acceleration lane. The performance of the strategy is demonstrated in simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Worldwide Subway Systems: Data Extraction, Topology, and Resilience Research on Traffic Signal Dynamic Optimization Model for Urban Intersections Based on Connected Vehicles Bus Travel Time Prediction Based on GPS Data: A Case Study of Nanjing City Operation Mode Selection Model of PPP Project Construction of Public Parking Lot Based on Analytic Hierarchy Process A Bi-Level Model of Dynamic Lane-Use and Traffic Signal for Intersections
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1