基于遗传算子自动设计的进化算法

Dazhi Jiang, Chenfeng Peng, Zhun Fan
{"title":"基于遗传算子自动设计的进化算法","authors":"Dazhi Jiang, Chenfeng Peng, Zhun Fan","doi":"10.1109/CIS.2013.21","DOIUrl":null,"url":null,"abstract":"At present there is a wide range of evolutionary algorithms available to researchers and practitioners. Despite the great diversity of these algorithms, virtually all of the algorithms share one feature: they have been manually designed. Can evolutionary algorithms be designed automatically by computer? In this paper, a novel evolutionary algorithm based on automatically designing of genetic operators is presented to address this problem. The resulting algorithm not only explores solutions in the problem space, but also automatically generates genetic operators in the operator space for each generation. In order to verify the performance of the proposed algorithm, comprehensive experiments on 23 well-known benchmark optimization problems are conducted, and the results show that the proposed algorithm can outperform standard Differential Evolution (DE) algorithm.","PeriodicalId":294223,"journal":{"name":"2013 Ninth International Conference on Computational Intelligence and Security","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Evolutionary Algorithm Based on Automatically Designing of Genetic Operators\",\"authors\":\"Dazhi Jiang, Chenfeng Peng, Zhun Fan\",\"doi\":\"10.1109/CIS.2013.21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"At present there is a wide range of evolutionary algorithms available to researchers and practitioners. Despite the great diversity of these algorithms, virtually all of the algorithms share one feature: they have been manually designed. Can evolutionary algorithms be designed automatically by computer? In this paper, a novel evolutionary algorithm based on automatically designing of genetic operators is presented to address this problem. The resulting algorithm not only explores solutions in the problem space, but also automatically generates genetic operators in the operator space for each generation. In order to verify the performance of the proposed algorithm, comprehensive experiments on 23 well-known benchmark optimization problems are conducted, and the results show that the proposed algorithm can outperform standard Differential Evolution (DE) algorithm.\",\"PeriodicalId\":294223,\"journal\":{\"name\":\"2013 Ninth International Conference on Computational Intelligence and Security\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Ninth International Conference on Computational Intelligence and Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIS.2013.21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Ninth International Conference on Computational Intelligence and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS.2013.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

目前有广泛的进化算法可供研究人员和实践者使用。尽管这些算法有很大的多样性,但实际上所有的算法都有一个共同的特点:它们都是人工设计的。进化算法可以由计算机自动设计吗?本文提出了一种基于遗传算子自动设计的进化算法来解决这一问题。所得到的算法不仅在问题空间中探索解,而且在每一代算子空间中自动生成遗传算子。为了验证所提算法的性能,对23个知名的基准优化问题进行了综合实验,结果表明所提算法优于标准的差分进化(DE)算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evolutionary Algorithm Based on Automatically Designing of Genetic Operators
At present there is a wide range of evolutionary algorithms available to researchers and practitioners. Despite the great diversity of these algorithms, virtually all of the algorithms share one feature: they have been manually designed. Can evolutionary algorithms be designed automatically by computer? In this paper, a novel evolutionary algorithm based on automatically designing of genetic operators is presented to address this problem. The resulting algorithm not only explores solutions in the problem space, but also automatically generates genetic operators in the operator space for each generation. In order to verify the performance of the proposed algorithm, comprehensive experiments on 23 well-known benchmark optimization problems are conducted, and the results show that the proposed algorithm can outperform standard Differential Evolution (DE) algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Co-op Advertising Analysis within a Supply Chain Based on the Three-Stage Non-cooperate Dynamic Game Model Study on Pseudorandomness of Some Pseudorandom Number Generators with Application The Superiority Analysis of Linear Frequency Modulation and Barker Code Composite Radar Signal The Improvement of the Commonly Used Linear Polynomial Selection Methods A Parallel Genetic Algorithm for Solving the Probabilistic Minimum Spanning Tree Problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1