使用质心逼近的跨媒体散列

Ruoyu Liu, Yao Zhao, Shikui Wei, Zhenfeng Zhu
{"title":"使用质心逼近的跨媒体散列","authors":"Ruoyu Liu, Yao Zhao, Shikui Wei, Zhenfeng Zhu","doi":"10.1109/ICME.2015.7177473","DOIUrl":null,"url":null,"abstract":"Cross-media retrieval has received increasing interest in recent years, which aims to addressing the semantic correlation issues within rich media. As two key aspects, cross-media representation and indexing have been studied for dealing with cross-media similarity measure and the scalability issue, respectively. In this paper, we propose a new cross-media hashing scheme, called Centroid Approaching Cross-Media Hashing (CAMH), to handle both cross-media representation and indexing simultaneously. Different from existing indexing methods, the proposed method introduces semantic category information into the learning procedure, leading to more exact hash codes of multiple media type instances. In addition, we present a comparative study of cross-media indexing methods under a unique evaluation framework. Extensive experiments on two commonly used datasets demonstrate the good performance in terms of search accuracy and time complexity.","PeriodicalId":146271,"journal":{"name":"2015 IEEE International Conference on Multimedia and Expo (ICME)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Cross-media hashing with Centroid Approaching\",\"authors\":\"Ruoyu Liu, Yao Zhao, Shikui Wei, Zhenfeng Zhu\",\"doi\":\"10.1109/ICME.2015.7177473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cross-media retrieval has received increasing interest in recent years, which aims to addressing the semantic correlation issues within rich media. As two key aspects, cross-media representation and indexing have been studied for dealing with cross-media similarity measure and the scalability issue, respectively. In this paper, we propose a new cross-media hashing scheme, called Centroid Approaching Cross-Media Hashing (CAMH), to handle both cross-media representation and indexing simultaneously. Different from existing indexing methods, the proposed method introduces semantic category information into the learning procedure, leading to more exact hash codes of multiple media type instances. In addition, we present a comparative study of cross-media indexing methods under a unique evaluation framework. Extensive experiments on two commonly used datasets demonstrate the good performance in terms of search accuracy and time complexity.\",\"PeriodicalId\":146271,\"journal\":{\"name\":\"2015 IEEE International Conference on Multimedia and Expo (ICME)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Multimedia and Expo (ICME)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICME.2015.7177473\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Multimedia and Expo (ICME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2015.7177473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

跨媒体检索近年来受到越来越多的关注,其目的是解决富媒体中的语义关联问题。跨媒体表示和索引是处理跨媒体相似性度量和可扩展性问题的两个关键方面。在本文中,我们提出了一种新的跨媒体哈希方案,称为质心逼近跨媒体哈希(CAMH),以同时处理跨媒体表示和索引。与现有的索引方法不同,该方法将语义分类信息引入到学习过程中,从而得到更精确的多媒体类型实例哈希码。此外,我们还在一个独特的评价框架下对跨媒体索引方法进行了比较研究。在两个常用数据集上的大量实验表明,该算法在搜索精度和时间复杂度方面具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cross-media hashing with Centroid Approaching
Cross-media retrieval has received increasing interest in recent years, which aims to addressing the semantic correlation issues within rich media. As two key aspects, cross-media representation and indexing have been studied for dealing with cross-media similarity measure and the scalability issue, respectively. In this paper, we propose a new cross-media hashing scheme, called Centroid Approaching Cross-Media Hashing (CAMH), to handle both cross-media representation and indexing simultaneously. Different from existing indexing methods, the proposed method introduces semantic category information into the learning procedure, leading to more exact hash codes of multiple media type instances. In addition, we present a comparative study of cross-media indexing methods under a unique evaluation framework. Extensive experiments on two commonly used datasets demonstrate the good performance in terms of search accuracy and time complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Affect-expressive hand gestures synthesis and animation VTouch: Vision-enhanced interaction for large touch displays Egocentric hand pose estimation and distance recovery in a single RGB image A hybrid approach for retrieving diverse social images of landmarks Spatial perception reproduction of sound events based on sound property coincidences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1