基于无线传感器网络的车辆声信号分类中的神经网络方法和MSPCA

G. Padmavathi, D. Shanmugapriya, M. Kalaivani
{"title":"基于无线传感器网络的车辆声信号分类中的神经网络方法和MSPCA","authors":"G. Padmavathi, D. Shanmugapriya, M. Kalaivani","doi":"10.1109/ICCCCT.2010.5670580","DOIUrl":null,"url":null,"abstract":"Acoustic communication has been widely used in wireless sensor networks. Vehicle acoustic signals have long been considered as unwanted traffic noise. In this research acoustic signals generated by each vehicle will be used to detect its presence and classify the type. The goal of multiscale PCA (MSPCA) is to reconstruct a simplified multivariate signal, starting from a multivariate signal and using a simple representation at each resolution level. Multiscale principal components analysis generalizes the PCA of a multivariate signal represented as a matrix by simultaneously performing a PCA on the matrices of details at different levels. By selecting the numbers of retained principal components, simplified signals can be reconstructed. These simplified signals are used for extracting the features. Six different features of the vehicle acoustic signals are calculated for the pre-processed acoustic vehicle signals and then further utilized as input to the classification system. These features include Signal Energy, Energy Entropy, Zero-Crossing Rate, Spectral Roll-Off, Spectral Centroid and Spectral Flux. Acoustic signal classification consists of extracting the features from a sound, and of using these features to identify classes the sound is liable to fit. Neural network approaches used here are KNN, PNN and BPN and these three approaches are combined with the MSPCA to obtain better accuracy.","PeriodicalId":250834,"journal":{"name":"2010 INTERNATIONAL CONFERENCE ON COMMUNICATION CONTROL AND COMPUTING TECHNOLOGIES","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Neural network approaches and MSPCA in vehicle acoustic signal classification using wireless sensor networks\",\"authors\":\"G. Padmavathi, D. Shanmugapriya, M. Kalaivani\",\"doi\":\"10.1109/ICCCCT.2010.5670580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Acoustic communication has been widely used in wireless sensor networks. Vehicle acoustic signals have long been considered as unwanted traffic noise. In this research acoustic signals generated by each vehicle will be used to detect its presence and classify the type. The goal of multiscale PCA (MSPCA) is to reconstruct a simplified multivariate signal, starting from a multivariate signal and using a simple representation at each resolution level. Multiscale principal components analysis generalizes the PCA of a multivariate signal represented as a matrix by simultaneously performing a PCA on the matrices of details at different levels. By selecting the numbers of retained principal components, simplified signals can be reconstructed. These simplified signals are used for extracting the features. Six different features of the vehicle acoustic signals are calculated for the pre-processed acoustic vehicle signals and then further utilized as input to the classification system. These features include Signal Energy, Energy Entropy, Zero-Crossing Rate, Spectral Roll-Off, Spectral Centroid and Spectral Flux. Acoustic signal classification consists of extracting the features from a sound, and of using these features to identify classes the sound is liable to fit. Neural network approaches used here are KNN, PNN and BPN and these three approaches are combined with the MSPCA to obtain better accuracy.\",\"PeriodicalId\":250834,\"journal\":{\"name\":\"2010 INTERNATIONAL CONFERENCE ON COMMUNICATION CONTROL AND COMPUTING TECHNOLOGIES\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 INTERNATIONAL CONFERENCE ON COMMUNICATION CONTROL AND COMPUTING TECHNOLOGIES\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCCCT.2010.5670580\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 INTERNATIONAL CONFERENCE ON COMMUNICATION CONTROL AND COMPUTING TECHNOLOGIES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCCT.2010.5670580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

声波通信在无线传感器网络中得到了广泛的应用。车辆声信号一直被认为是有害的交通噪声。在本研究中,每辆车产生的声信号将用于检测其存在并对其类型进行分类。多尺度主成分分析(MSPCA)的目标是重建一个简化的多变量信号,从一个多变量信号开始,在每个分辨率水平上使用一个简单的表示。多尺度主成分分析通过对不同层次的细节矩阵同时进行主成分分析,将多元信号的主成分分析推广为矩阵。通过选择保留主成分的个数,可以重构简化后的信号。这些简化的信号用于提取特征。对预处理后的车辆声信号计算车辆声信号的六种不同特征,并将其作为分类系统的输入。这些特征包括信号能量、能量熵、过零率、谱滚转、谱质心和谱通量。声信号分类包括从声音中提取特征,并使用这些特征来识别声音可能适合的类别。本文使用的神经网络方法有KNN、PNN和BPN,并将这三种方法与MSPCA相结合以获得更好的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neural network approaches and MSPCA in vehicle acoustic signal classification using wireless sensor networks
Acoustic communication has been widely used in wireless sensor networks. Vehicle acoustic signals have long been considered as unwanted traffic noise. In this research acoustic signals generated by each vehicle will be used to detect its presence and classify the type. The goal of multiscale PCA (MSPCA) is to reconstruct a simplified multivariate signal, starting from a multivariate signal and using a simple representation at each resolution level. Multiscale principal components analysis generalizes the PCA of a multivariate signal represented as a matrix by simultaneously performing a PCA on the matrices of details at different levels. By selecting the numbers of retained principal components, simplified signals can be reconstructed. These simplified signals are used for extracting the features. Six different features of the vehicle acoustic signals are calculated for the pre-processed acoustic vehicle signals and then further utilized as input to the classification system. These features include Signal Energy, Energy Entropy, Zero-Crossing Rate, Spectral Roll-Off, Spectral Centroid and Spectral Flux. Acoustic signal classification consists of extracting the features from a sound, and of using these features to identify classes the sound is liable to fit. Neural network approaches used here are KNN, PNN and BPN and these three approaches are combined with the MSPCA to obtain better accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Face recognition system using multi layer feed Forward Neural Networks and Principal Component Analysis with variable learning rate VLSI design of mixed radix FFT Processor for MIMO OFDM in wireless communications Cellular phone based biomedical system for health care Intelligent based modelling, control and fault detection of chemical process Analysis of linear biconical antenna array
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1