列车定位器使用惯性传感器和里程表

Petr Ernest, Roman Maz, Libor Pfeueil
{"title":"列车定位器使用惯性传感器和里程表","authors":"Petr Ernest, Roman Maz, Libor Pfeueil","doi":"10.1109/IVS.2004.1336497","DOIUrl":null,"url":null,"abstract":"The paper describes a solution to railway vehicle localization problem for the cases, where no global positioning information (like GPS) is temporarily unavailable. The given solution also assumes no additional landmarks or other extraordinary installations aside the train track. The presented approach is based on smart fusion of onboard-gathered data making use of Kalman filter. The available data sources include a vehicle odometer and accelerometer.","PeriodicalId":296386,"journal":{"name":"IEEE Intelligent Vehicles Symposium, 2004","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":"{\"title\":\"Train locator using inertial sensors and odometer\",\"authors\":\"Petr Ernest, Roman Maz, Libor Pfeueil\",\"doi\":\"10.1109/IVS.2004.1336497\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper describes a solution to railway vehicle localization problem for the cases, where no global positioning information (like GPS) is temporarily unavailable. The given solution also assumes no additional landmarks or other extraordinary installations aside the train track. The presented approach is based on smart fusion of onboard-gathered data making use of Kalman filter. The available data sources include a vehicle odometer and accelerometer.\",\"PeriodicalId\":296386,\"journal\":{\"name\":\"IEEE Intelligent Vehicles Symposium, 2004\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Intelligent Vehicles Symposium, 2004\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVS.2004.1336497\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Intelligent Vehicles Symposium, 2004","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2004.1336497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

摘要

针对暂时无法获得GPS等全球定位信息的情况,提出了一种铁路车辆定位问题的解决方案。给定的解决方案还假设除了火车轨道之外没有额外的地标或其他特殊设施。该方法利用卡尔曼滤波对机载采集数据进行智能融合。可用的数据源包括车辆里程表和加速度计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Train locator using inertial sensors and odometer
The paper describes a solution to railway vehicle localization problem for the cases, where no global positioning information (like GPS) is temporarily unavailable. The given solution also assumes no additional landmarks or other extraordinary installations aside the train track. The presented approach is based on smart fusion of onboard-gathered data making use of Kalman filter. The available data sources include a vehicle odometer and accelerometer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design of an instrumented vehicle test bed for developing a human centered driver support system Defect detection on rail surfaces by a vision based system Probabilistic contour extraction with model-switching for vehicle localization A fuzzy ranking method for automated highway driving Fusion of range and vision for real-time motion estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1