文本中主观内容描述的识别与翻译

Magnus Bender, Tanya Braun, M. Gehrke, Felix Kuhr, Ralf Möller, Simon Schiff
{"title":"文本中主观内容描述的识别与翻译","authors":"Magnus Bender, Tanya Braun, M. Gehrke, Felix Kuhr, Ralf Möller, Simon Schiff","doi":"10.1142/s1793351x21400122","DOIUrl":null,"url":null,"abstract":"An agent pursuing a task may work with a corpus of documents as a reference library. Subjective content descriptions (SCDs) provide additional data that add value in the context of the agent’s task. In the pursuit of documents to add to the corpus, an agent may come across new documents where content text and SCDs from another agent are interleaved and no distinction can be made unless the agent knows the content from somewhere else. Therefore, this paper presents a hidden Markov model-based approach to identify SCDs in a new document where SCDs occur inline among content text. Additionally, we present a dictionary selection approach to identify suitable translations for content text and SCDs based on [Formula: see text]-grams. We end with a case study evaluating both approaches based on simulated and real-world data.","PeriodicalId":217956,"journal":{"name":"Int. J. Semantic Comput.","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Identifying and Translating Subjective Content Descriptions Among Texts\",\"authors\":\"Magnus Bender, Tanya Braun, M. Gehrke, Felix Kuhr, Ralf Möller, Simon Schiff\",\"doi\":\"10.1142/s1793351x21400122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An agent pursuing a task may work with a corpus of documents as a reference library. Subjective content descriptions (SCDs) provide additional data that add value in the context of the agent’s task. In the pursuit of documents to add to the corpus, an agent may come across new documents where content text and SCDs from another agent are interleaved and no distinction can be made unless the agent knows the content from somewhere else. Therefore, this paper presents a hidden Markov model-based approach to identify SCDs in a new document where SCDs occur inline among content text. Additionally, we present a dictionary selection approach to identify suitable translations for content text and SCDs based on [Formula: see text]-grams. We end with a case study evaluating both approaches based on simulated and real-world data.\",\"PeriodicalId\":217956,\"journal\":{\"name\":\"Int. J. Semantic Comput.\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Semantic Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793351x21400122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Semantic Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1793351x21400122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

执行任务的代理可以使用文档语料库作为参考库。主观内容描述(scd)提供在代理任务上下文中增加价值的附加数据。在寻找要添加到语料库的文档时,代理可能会遇到新文档,其中内容文本和来自另一个代理的scd交织在一起,除非代理知道来自其他地方的内容,否则无法区分。因此,本文提出了一种基于隐马尔可夫模型的方法来识别新文档中的scd,其中scd在内容文本中内联出现。此外,我们提出了一种基于[公式:见文本]-grams的字典选择方法来识别内容文本和scd的合适翻译。最后,我们以一个基于模拟和真实数据的案例研究来评估这两种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identifying and Translating Subjective Content Descriptions Among Texts
An agent pursuing a task may work with a corpus of documents as a reference library. Subjective content descriptions (SCDs) provide additional data that add value in the context of the agent’s task. In the pursuit of documents to add to the corpus, an agent may come across new documents where content text and SCDs from another agent are interleaved and no distinction can be made unless the agent knows the content from somewhere else. Therefore, this paper presents a hidden Markov model-based approach to identify SCDs in a new document where SCDs occur inline among content text. Additionally, we present a dictionary selection approach to identify suitable translations for content text and SCDs based on [Formula: see text]-grams. We end with a case study evaluating both approaches based on simulated and real-world data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Guest Editorial - Special Issue on IEEE AIKE 2022 TemporalDedup: Domain-Independent Deduplication of Redundant and Errant Temporal Data Knowledge Graph-Based Explainable Artificial Intelligence for Business Process Analysis Knowledge Graph-Based Integration of Autonomous Driving Datasets Confidence-Based Cheat Detection Through Constrained Order Inference of Temporal Sequences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1