{"title":"AMI @ EVALITA2020:厌女症自动识别","authors":"E. Fersini, Debora Nozza, Paolo Rosso","doi":"10.4000/BOOKS.AACCADEMIA.6764","DOIUrl":null,"url":null,"abstract":"English. Automatic Misogyny Identification (AMI) is a shared task proposed at the Evalita 2020 evaluation campaign. The AMI challenge, based on Italian tweets, is organized into two subtasks: (1) Subtask A about misogyny and aggressiveness identification and (2) Subtask B about the fairness of the model. At the end of the evaluation phase, we received a total of 20 runs for Subtask A and 11 runs for Subtask B, submitted by 8 teams. In this paper, we present an overview of the AMI shared task, the datasets, the evaluation method-ology, the results obtained by the participants and a discussion about the method-ology adopted by the teams. Finally, we draw some conclusions and discuss future work.","PeriodicalId":184564,"journal":{"name":"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"61","resultStr":"{\"title\":\"AMI @ EVALITA2020: Automatic Misogyny Identification\",\"authors\":\"E. Fersini, Debora Nozza, Paolo Rosso\",\"doi\":\"10.4000/BOOKS.AACCADEMIA.6764\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"English. Automatic Misogyny Identification (AMI) is a shared task proposed at the Evalita 2020 evaluation campaign. The AMI challenge, based on Italian tweets, is organized into two subtasks: (1) Subtask A about misogyny and aggressiveness identification and (2) Subtask B about the fairness of the model. At the end of the evaluation phase, we received a total of 20 runs for Subtask A and 11 runs for Subtask B, submitted by 8 teams. In this paper, we present an overview of the AMI shared task, the datasets, the evaluation method-ology, the results obtained by the participants and a discussion about the method-ology adopted by the teams. Finally, we draw some conclusions and discuss future work.\",\"PeriodicalId\":184564,\"journal\":{\"name\":\"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"61\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4000/BOOKS.AACCADEMIA.6764\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4000/BOOKS.AACCADEMIA.6764","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
AMI @ EVALITA2020: Automatic Misogyny Identification
English. Automatic Misogyny Identification (AMI) is a shared task proposed at the Evalita 2020 evaluation campaign. The AMI challenge, based on Italian tweets, is organized into two subtasks: (1) Subtask A about misogyny and aggressiveness identification and (2) Subtask B about the fairness of the model. At the end of the evaluation phase, we received a total of 20 runs for Subtask A and 11 runs for Subtask B, submitted by 8 teams. In this paper, we present an overview of the AMI shared task, the datasets, the evaluation method-ology, the results obtained by the participants and a discussion about the method-ology adopted by the teams. Finally, we draw some conclusions and discuss future work.