基于变步长零吸引LMS的毫米波混合MIMO系统信道估计

Vidya Bhasker Shukla, R. Mitra, V. Bhatia
{"title":"基于变步长零吸引LMS的毫米波混合MIMO系统信道估计","authors":"Vidya Bhasker Shukla, R. Mitra, V. Bhatia","doi":"10.1109/SPCOM55316.2022.9840854","DOIUrl":null,"url":null,"abstract":"Millimeter-wave multiple-input multiple-output (mmWave MIMO) has emerged as a viable technique for 5G and beyond 5G(B5G) wireless networks, promising higher spectral efficiency and increased data speeds. However, achieving high spectral efficiency and data rates requires precise channel estimation, which is difficult for mmWave MIMO due to scattering and blockages in general. Because of scattering and blockages, mmWave MIMO channels have intrinsic sparsity, which needs sparse-aware channel estimation algorithms. As a result, this work propose a variable step-size zero-attracting least mean squares (VSSZALMS) based channel-estimator. In VSSZALMS the step-size increases (or decreases) as the mean-square error (MSE) increases (or decreases) that’s result adaptive estimator based on VSSZALMS achieves better tracking and faster convergence rate. Convergence and steady-state behavior of estimator is analyzed. Simulations for a typical mmWave MIMO channels demonstrate the benefits of the proposed sparse channel-estimation approach and its convergence.","PeriodicalId":246982,"journal":{"name":"2022 IEEE International Conference on Signal Processing and Communications (SPCOM)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Millimeter Wave Hybrid MIMO System Channel Estimation Using Variable Step Size Zero Attracting LMS\",\"authors\":\"Vidya Bhasker Shukla, R. Mitra, V. Bhatia\",\"doi\":\"10.1109/SPCOM55316.2022.9840854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Millimeter-wave multiple-input multiple-output (mmWave MIMO) has emerged as a viable technique for 5G and beyond 5G(B5G) wireless networks, promising higher spectral efficiency and increased data speeds. However, achieving high spectral efficiency and data rates requires precise channel estimation, which is difficult for mmWave MIMO due to scattering and blockages in general. Because of scattering and blockages, mmWave MIMO channels have intrinsic sparsity, which needs sparse-aware channel estimation algorithms. As a result, this work propose a variable step-size zero-attracting least mean squares (VSSZALMS) based channel-estimator. In VSSZALMS the step-size increases (or decreases) as the mean-square error (MSE) increases (or decreases) that’s result adaptive estimator based on VSSZALMS achieves better tracking and faster convergence rate. Convergence and steady-state behavior of estimator is analyzed. Simulations for a typical mmWave MIMO channels demonstrate the benefits of the proposed sparse channel-estimation approach and its convergence.\",\"PeriodicalId\":246982,\"journal\":{\"name\":\"2022 IEEE International Conference on Signal Processing and Communications (SPCOM)\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Signal Processing and Communications (SPCOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPCOM55316.2022.9840854\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Signal Processing and Communications (SPCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPCOM55316.2022.9840854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

毫米波多输入多输出(mmWave MIMO)已经成为5G及5G以上(B5G)无线网络的可行技术,有望提高频谱效率和数据速度。然而,实现高频谱效率和数据速率需要精确的信道估计,这对于毫米波MIMO来说是困难的,因为通常存在散射和阻塞。由于散射和阻塞,毫米波MIMO信道具有固有的稀疏性,需要稀疏感知信道估计算法。因此,本工作提出了一种基于可变步长零吸引最小均方(VSSZALMS)的信道估计器。在VSSZALMS中,步长随均方误差(MSE)的增大(或减小)而增大(或减小),使得基于VSSZALMS的自适应估计器实现了更好的跟踪和更快的收敛速度。分析了估计器的收敛性和稳态性。对典型毫米波MIMO信道的仿真表明了稀疏信道估计方法的优点及其收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Millimeter Wave Hybrid MIMO System Channel Estimation Using Variable Step Size Zero Attracting LMS
Millimeter-wave multiple-input multiple-output (mmWave MIMO) has emerged as a viable technique for 5G and beyond 5G(B5G) wireless networks, promising higher spectral efficiency and increased data speeds. However, achieving high spectral efficiency and data rates requires precise channel estimation, which is difficult for mmWave MIMO due to scattering and blockages in general. Because of scattering and blockages, mmWave MIMO channels have intrinsic sparsity, which needs sparse-aware channel estimation algorithms. As a result, this work propose a variable step-size zero-attracting least mean squares (VSSZALMS) based channel-estimator. In VSSZALMS the step-size increases (or decreases) as the mean-square error (MSE) increases (or decreases) that’s result adaptive estimator based on VSSZALMS achieves better tracking and faster convergence rate. Convergence and steady-state behavior of estimator is analyzed. Simulations for a typical mmWave MIMO channels demonstrate the benefits of the proposed sparse channel-estimation approach and its convergence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
C-Band Iris Coupled Cavity Bandpass Filter A Wideband Bandpass Filter using U-shaped slots on SIW with two Notches at 8 GHz and 10 GHz Semi-Blind Technique for Frequency Selective Channel Estimation in Millimeter-Wave MIMO Coded FBMC System Binary Intelligent Reflecting Surfaces Assisted OFDM Systems Improving the Performance of Zero-Resource Children’s ASR System through Formant and Duration Modification based Data Augmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1