HEVC的样本自适应偏移

Chih-Ming Fu, Ching-Yeh Chen, Yu-Wen Huang, S. Lei
{"title":"HEVC的样本自适应偏移","authors":"Chih-Ming Fu, Ching-Yeh Chen, Yu-Wen Huang, S. Lei","doi":"10.1109/MMSP.2011.6093807","DOIUrl":null,"url":null,"abstract":"A new video coding tool, sample adaptive offset (SAO), is introduced in this paper. SAO has been adopted into the Working Draft of the new video coding standard, High-Efficiency Video Coding (HEVC). The SAO is located after deblocking in the video coding loop. The concept of SAO is to classify reconstructed pixels into different categories and then reduce the distortion by simply adding an offset for each category of pixels. The pixel intensity and edge properties are used for pixel classification. To further improve the coding efficiency, a picture can be divided into regions for localization of offset parameters. Simulation results show that SAO can achieve on average 2% bit rate reduction and up to 6% bit rate reduction. The run time increases for encoders and decoders are only 2%.","PeriodicalId":214459,"journal":{"name":"2011 IEEE 13th International Workshop on Multimedia Signal Processing","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"72","resultStr":"{\"title\":\"Sample adaptive offset for HEVC\",\"authors\":\"Chih-Ming Fu, Ching-Yeh Chen, Yu-Wen Huang, S. Lei\",\"doi\":\"10.1109/MMSP.2011.6093807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new video coding tool, sample adaptive offset (SAO), is introduced in this paper. SAO has been adopted into the Working Draft of the new video coding standard, High-Efficiency Video Coding (HEVC). The SAO is located after deblocking in the video coding loop. The concept of SAO is to classify reconstructed pixels into different categories and then reduce the distortion by simply adding an offset for each category of pixels. The pixel intensity and edge properties are used for pixel classification. To further improve the coding efficiency, a picture can be divided into regions for localization of offset parameters. Simulation results show that SAO can achieve on average 2% bit rate reduction and up to 6% bit rate reduction. The run time increases for encoders and decoders are only 2%.\",\"PeriodicalId\":214459,\"journal\":{\"name\":\"2011 IEEE 13th International Workshop on Multimedia Signal Processing\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"72\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 13th International Workshop on Multimedia Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMSP.2011.6093807\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 13th International Workshop on Multimedia Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2011.6093807","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 72

摘要

本文介绍了一种新的视频编码工具——采样自适应偏移(SAO)。SAO已被纳入新的视频编码标准——高效视频编码(HEVC)的工作草案中。SAO位于视频编码循环中的块化之后。SAO的概念是将重建的像素分类为不同的类别,然后通过简单地为每个类别的像素添加偏移量来减少畸变。像素强度和边缘属性用于像素分类。为了进一步提高编码效率,可以将图像划分为多个区域进行偏移量参数的定位。仿真结果表明,SAO可以实现平均2%的比特率降低,最高可达6%的比特率降低。编码器和解码器的运行时间仅增加2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sample adaptive offset for HEVC
A new video coding tool, sample adaptive offset (SAO), is introduced in this paper. SAO has been adopted into the Working Draft of the new video coding standard, High-Efficiency Video Coding (HEVC). The SAO is located after deblocking in the video coding loop. The concept of SAO is to classify reconstructed pixels into different categories and then reduce the distortion by simply adding an offset for each category of pixels. The pixel intensity and edge properties are used for pixel classification. To further improve the coding efficiency, a picture can be divided into regions for localization of offset parameters. Simulation results show that SAO can achieve on average 2% bit rate reduction and up to 6% bit rate reduction. The run time increases for encoders and decoders are only 2%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Separation of speech sources using an Acoustic Vector Sensor Strategies for orca call retrieval to support collaborative annotation of a large archive Recognizing actions using salient features Region of interest determination using human computation Image super-resolution via feature-based affine transform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1