构造非布尔问题神经网络的布尔方法

G. Thimm, E. Fiesler
{"title":"构造非布尔问题神经网络的布尔方法","authors":"G. Thimm, E. Fiesler","doi":"10.1109/TAI.1996.560784","DOIUrl":null,"url":null,"abstract":"A neural network construction method for problems specified for data sets with input and/or output values in the continuous or discrete domain is described and evaluated. This approach is based on a Boolean approximation of the data set and is generic for various neural network architectures. The construction method takes advantage of a construction method for Boolean problems without increasing the dimensions of the input or output vectors, which is an advantage over approaches which work on a binarized version of the data set with an increased number of input and output elements. Further, the networks are pruned in a second phase in order to obtain very small networks.","PeriodicalId":209171,"journal":{"name":"Proceedings Eighth IEEE International Conference on Tools with Artificial Intelligence","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Boolean approach to construct neural networks for non-Boolean problems\",\"authors\":\"G. Thimm, E. Fiesler\",\"doi\":\"10.1109/TAI.1996.560784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A neural network construction method for problems specified for data sets with input and/or output values in the continuous or discrete domain is described and evaluated. This approach is based on a Boolean approximation of the data set and is generic for various neural network architectures. The construction method takes advantage of a construction method for Boolean problems without increasing the dimensions of the input or output vectors, which is an advantage over approaches which work on a binarized version of the data set with an increased number of input and output elements. Further, the networks are pruned in a second phase in order to obtain very small networks.\",\"PeriodicalId\":209171,\"journal\":{\"name\":\"Proceedings Eighth IEEE International Conference on Tools with Artificial Intelligence\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Eighth IEEE International Conference on Tools with Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TAI.1996.560784\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Eighth IEEE International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAI.1996.560784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

描述并评估了一种神经网络构建方法,该方法适用于具有连续或离散域输入和/或输出值的数据集。这种方法基于数据集的布尔近似,适用于各种神经网络架构。构造方法利用了布尔问题的构造方法的优点,而不增加输入或输出向量的维度,这比处理具有增加输入和输出元素数量的数据集的二值化版本的方法有优势。此外,在第二阶段对网络进行修剪,以获得非常小的网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Boolean approach to construct neural networks for non-Boolean problems
A neural network construction method for problems specified for data sets with input and/or output values in the continuous or discrete domain is described and evaluated. This approach is based on a Boolean approximation of the data set and is generic for various neural network architectures. The construction method takes advantage of a construction method for Boolean problems without increasing the dimensions of the input or output vectors, which is an advantage over approaches which work on a binarized version of the data set with an increased number of input and output elements. Further, the networks are pruned in a second phase in order to obtain very small networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
AI tools in scheduling problem solving: a solver based on a "well-behaved" restriction of TCSPs A deliberative and reactive diagnosis agent based on logic programming Subdefinite models as a variety of constraint programming Oz Scheduler: a workbench for scheduling problems Automatic scale selection as a pre-processing stage to interpreting real-world data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1