{"title":"动态市场环境下最优交易执行的成本-效率强化学习","authors":"Di Chen, Yada Zhu, Miao Liu, Jianbo Li","doi":"10.1145/3533271.3561761","DOIUrl":null,"url":null,"abstract":"Learning a high-performance trade execution model via reinforcement learning (RL) requires interaction with the real dynamic market. However, the massive interactions required by direct RL would result in a significant training overhead. In this paper, we propose a cost-efficient reinforcement learning (RL) approach called Deep Dyna-Double Q-learning (D3Q), which integrates deep reinforcement learning and planning to reduce the training overhead while improving the trading performance. Specifically, D3Q includes a learnable market environment model, which approximates the market impact using real market experience, to enhance policy learning via the learned environment. Meanwhile, we propose a novel state-balanced exploration scheme to solve the exploration bias caused by the non-increasing residual inventory during the trade execution to accelerate model learning. As demonstrated by our extensive experiments, the proposed D3Q framework significantly increases sample efficiency and outperforms state-of-the-art methods on average trading cost as well.","PeriodicalId":134888,"journal":{"name":"Proceedings of the Third ACM International Conference on AI in Finance","volume":"58 11","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cost-Efficient Reinforcement Learning for Optimal Trade Execution on Dynamic Market Environment\",\"authors\":\"Di Chen, Yada Zhu, Miao Liu, Jianbo Li\",\"doi\":\"10.1145/3533271.3561761\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Learning a high-performance trade execution model via reinforcement learning (RL) requires interaction with the real dynamic market. However, the massive interactions required by direct RL would result in a significant training overhead. In this paper, we propose a cost-efficient reinforcement learning (RL) approach called Deep Dyna-Double Q-learning (D3Q), which integrates deep reinforcement learning and planning to reduce the training overhead while improving the trading performance. Specifically, D3Q includes a learnable market environment model, which approximates the market impact using real market experience, to enhance policy learning via the learned environment. Meanwhile, we propose a novel state-balanced exploration scheme to solve the exploration bias caused by the non-increasing residual inventory during the trade execution to accelerate model learning. As demonstrated by our extensive experiments, the proposed D3Q framework significantly increases sample efficiency and outperforms state-of-the-art methods on average trading cost as well.\",\"PeriodicalId\":134888,\"journal\":{\"name\":\"Proceedings of the Third ACM International Conference on AI in Finance\",\"volume\":\"58 11\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Third ACM International Conference on AI in Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3533271.3561761\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Third ACM International Conference on AI in Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3533271.3561761","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cost-Efficient Reinforcement Learning for Optimal Trade Execution on Dynamic Market Environment
Learning a high-performance trade execution model via reinforcement learning (RL) requires interaction with the real dynamic market. However, the massive interactions required by direct RL would result in a significant training overhead. In this paper, we propose a cost-efficient reinforcement learning (RL) approach called Deep Dyna-Double Q-learning (D3Q), which integrates deep reinforcement learning and planning to reduce the training overhead while improving the trading performance. Specifically, D3Q includes a learnable market environment model, which approximates the market impact using real market experience, to enhance policy learning via the learned environment. Meanwhile, we propose a novel state-balanced exploration scheme to solve the exploration bias caused by the non-increasing residual inventory during the trade execution to accelerate model learning. As demonstrated by our extensive experiments, the proposed D3Q framework significantly increases sample efficiency and outperforms state-of-the-art methods on average trading cost as well.