分布式发电、微电网、热储能、微热电联产

R. Belu
{"title":"分布式发电、微电网、热储能、微热电联产","authors":"R. Belu","doi":"10.1049/PBPO096E_CH12","DOIUrl":null,"url":null,"abstract":"Energy sustainability is the cornerstone to the health and competitiveness of the industries in our global economy. It is more than being environmentally responsible, means the ability to utilize and optimize multiple sources of secure and affordable energy for the enterprises, and then continuously improve the utilization through systems analysis, energy diversification, conservation, and intelligent use of these resources. Distributed energy resources (DER) and dispersed generation systems are becoming more important in the future electricity generation. A description of distributed energy resource and types, characteristics, performances, is the subject of this chapter. Brief presentations of the power system interfaces, power electronics, and control of distributed generation systems are also included. The chapter presents an overview of the key issues concerning the integration of distributed and dispersed generation systems, the role of thermal energy storage (TES) systems and the main applications. A synopsis of the main challenges and issues that must be overcome in the process of DG and DER applications and integration are presented. Particular emphasis is placed on the need to move away from the fit and forget approach of connecting DG to electric power systems to a policy of integrating DG into power system planning and operation through active management of distribution networks and application of other novel concepts. Several distributed energy systems, together with energy storage capabilities, expected to have a significant impact on the energy market are presented and discussed. Microgrid is a new approach of power generation and delivery system that considers DG, DER, and loads, often controllable loads is set as a small controllable subsystem of a power distribution network. The microgrid subsystem has characteristics, such as the ability to operate in parallel or in isolation from the electrical grid, having the capabilities and functionalities to improve service and power quality, reliability, and operational optimality. Microgrids may also be described as a self-contained subset of indigenous generation, distribution system assets, protection and control capabilities, and end user loads that may be operated in either a utility connected mode or in an isolated from the utility mode. In addition to providing reliable electric power supply, microgrids are also capable of providing a wide array of ancillary services, such as voltage support, frequency regulation, harmonic cancellation, power factor correction, spinning, and nonspinning reserves. A microgrid may be intrinsically distributive in nature including several DGs-both renewable and conventional sourced energy storage elements, protection systems, end user loads, and other elements. In order to achieve a coordinated performance of a microgrid (or several microgrids) within the scope of a distribution company, it is required to perform distributed or cooperative control. This harvested energy through such applications can be released onto the grid, when needed, to eliminate the need for high-cost peak generators or can be used local for heat and hot water or other industrial process applications. Microcombined heat and power (CHP) systems powering up to about 10 kWe are considered as a future key technology for the building or facility energy supplies from the viewpoints of heating system users, manufacturers, and energy suppliers. CHP plants can be based on conventional diesel, gas or biomass engines, gas turbines, Stirling engines, or fuel cells. Energy storage systems are an important component of the renewable energy technology applications. Among the storage technologies, the TES, a technology that stocks thermal energy by heating or cooling a storage medium and use the stored energy at a later time for heating, cooling and power generation. TES systems are used particularly in buildings and in industrial processes, while the main advantages of using TES in an energy system, building or industrial process include an increase in overall efficiency and better reliability, leading to the reductions in investment and running costs, and less environmental pollution of the environment. Energy storage inclusion into distributed generation systems provides the user dispatchability of DER, while improving the overall system performances and capabilities. All of the DER and DG technologies require specific power electronics and control schemes to convert the generated power into useful power that can be directly interconnected with the grid or that can be used for specific applications. This chapter presents convenient resources to understand the current state-of-the art power electronic interfaces for DER and DG applications. In this chapter, a description of TES systems and microCHP generation systems is presented with references to heating, ventilation, and air conditioning systems. A discussion on the major components of such systems, load analysis and methods for improving the energy efficiency of existing systems are also included in this chapter. After completing this chapter, the readers are able to understand the importance and role of the thermal energy systems and storage, energy conservation and efficiency in building electrical and mechanical systems, and in industrial energy systems and equipment. A special attention is given to the understanding and learning about micro-CHP generation systems, components and configurations of such systems, their operation, functions, and capabilities.","PeriodicalId":296238,"journal":{"name":"Industrial Power Systems with Distributed and Embedded Generation","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Distributed generation, microgrids, thermal energy storage, and micro-combine heat and power generation\",\"authors\":\"R. Belu\",\"doi\":\"10.1049/PBPO096E_CH12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Energy sustainability is the cornerstone to the health and competitiveness of the industries in our global economy. It is more than being environmentally responsible, means the ability to utilize and optimize multiple sources of secure and affordable energy for the enterprises, and then continuously improve the utilization through systems analysis, energy diversification, conservation, and intelligent use of these resources. Distributed energy resources (DER) and dispersed generation systems are becoming more important in the future electricity generation. A description of distributed energy resource and types, characteristics, performances, is the subject of this chapter. Brief presentations of the power system interfaces, power electronics, and control of distributed generation systems are also included. The chapter presents an overview of the key issues concerning the integration of distributed and dispersed generation systems, the role of thermal energy storage (TES) systems and the main applications. A synopsis of the main challenges and issues that must be overcome in the process of DG and DER applications and integration are presented. Particular emphasis is placed on the need to move away from the fit and forget approach of connecting DG to electric power systems to a policy of integrating DG into power system planning and operation through active management of distribution networks and application of other novel concepts. Several distributed energy systems, together with energy storage capabilities, expected to have a significant impact on the energy market are presented and discussed. Microgrid is a new approach of power generation and delivery system that considers DG, DER, and loads, often controllable loads is set as a small controllable subsystem of a power distribution network. The microgrid subsystem has characteristics, such as the ability to operate in parallel or in isolation from the electrical grid, having the capabilities and functionalities to improve service and power quality, reliability, and operational optimality. Microgrids may also be described as a self-contained subset of indigenous generation, distribution system assets, protection and control capabilities, and end user loads that may be operated in either a utility connected mode or in an isolated from the utility mode. In addition to providing reliable electric power supply, microgrids are also capable of providing a wide array of ancillary services, such as voltage support, frequency regulation, harmonic cancellation, power factor correction, spinning, and nonspinning reserves. A microgrid may be intrinsically distributive in nature including several DGs-both renewable and conventional sourced energy storage elements, protection systems, end user loads, and other elements. In order to achieve a coordinated performance of a microgrid (or several microgrids) within the scope of a distribution company, it is required to perform distributed or cooperative control. This harvested energy through such applications can be released onto the grid, when needed, to eliminate the need for high-cost peak generators or can be used local for heat and hot water or other industrial process applications. Microcombined heat and power (CHP) systems powering up to about 10 kWe are considered as a future key technology for the building or facility energy supplies from the viewpoints of heating system users, manufacturers, and energy suppliers. CHP plants can be based on conventional diesel, gas or biomass engines, gas turbines, Stirling engines, or fuel cells. Energy storage systems are an important component of the renewable energy technology applications. Among the storage technologies, the TES, a technology that stocks thermal energy by heating or cooling a storage medium and use the stored energy at a later time for heating, cooling and power generation. TES systems are used particularly in buildings and in industrial processes, while the main advantages of using TES in an energy system, building or industrial process include an increase in overall efficiency and better reliability, leading to the reductions in investment and running costs, and less environmental pollution of the environment. Energy storage inclusion into distributed generation systems provides the user dispatchability of DER, while improving the overall system performances and capabilities. All of the DER and DG technologies require specific power electronics and control schemes to convert the generated power into useful power that can be directly interconnected with the grid or that can be used for specific applications. This chapter presents convenient resources to understand the current state-of-the art power electronic interfaces for DER and DG applications. In this chapter, a description of TES systems and microCHP generation systems is presented with references to heating, ventilation, and air conditioning systems. A discussion on the major components of such systems, load analysis and methods for improving the energy efficiency of existing systems are also included in this chapter. After completing this chapter, the readers are able to understand the importance and role of the thermal energy systems and storage, energy conservation and efficiency in building electrical and mechanical systems, and in industrial energy systems and equipment. A special attention is given to the understanding and learning about micro-CHP generation systems, components and configurations of such systems, their operation, functions, and capabilities.\",\"PeriodicalId\":296238,\"journal\":{\"name\":\"Industrial Power Systems with Distributed and Embedded Generation\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial Power Systems with Distributed and Embedded Generation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/PBPO096E_CH12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Power Systems with Distributed and Embedded Generation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/PBPO096E_CH12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本章还讨论了这类系统的主要组成部分、负荷分析和提高现有系统能源效率的方法。在完成这一章后,读者能够理解热能系统和储存、节能和效率在建筑电气和机械系统以及工业能源系统和设备中的重要性和作用。特别关注对微型热电联产发电系统的理解和学习,这些系统的组件和配置,它们的操作,功能和能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Distributed generation, microgrids, thermal energy storage, and micro-combine heat and power generation
Energy sustainability is the cornerstone to the health and competitiveness of the industries in our global economy. It is more than being environmentally responsible, means the ability to utilize and optimize multiple sources of secure and affordable energy for the enterprises, and then continuously improve the utilization through systems analysis, energy diversification, conservation, and intelligent use of these resources. Distributed energy resources (DER) and dispersed generation systems are becoming more important in the future electricity generation. A description of distributed energy resource and types, characteristics, performances, is the subject of this chapter. Brief presentations of the power system interfaces, power electronics, and control of distributed generation systems are also included. The chapter presents an overview of the key issues concerning the integration of distributed and dispersed generation systems, the role of thermal energy storage (TES) systems and the main applications. A synopsis of the main challenges and issues that must be overcome in the process of DG and DER applications and integration are presented. Particular emphasis is placed on the need to move away from the fit and forget approach of connecting DG to electric power systems to a policy of integrating DG into power system planning and operation through active management of distribution networks and application of other novel concepts. Several distributed energy systems, together with energy storage capabilities, expected to have a significant impact on the energy market are presented and discussed. Microgrid is a new approach of power generation and delivery system that considers DG, DER, and loads, often controllable loads is set as a small controllable subsystem of a power distribution network. The microgrid subsystem has characteristics, such as the ability to operate in parallel or in isolation from the electrical grid, having the capabilities and functionalities to improve service and power quality, reliability, and operational optimality. Microgrids may also be described as a self-contained subset of indigenous generation, distribution system assets, protection and control capabilities, and end user loads that may be operated in either a utility connected mode or in an isolated from the utility mode. In addition to providing reliable electric power supply, microgrids are also capable of providing a wide array of ancillary services, such as voltage support, frequency regulation, harmonic cancellation, power factor correction, spinning, and nonspinning reserves. A microgrid may be intrinsically distributive in nature including several DGs-both renewable and conventional sourced energy storage elements, protection systems, end user loads, and other elements. In order to achieve a coordinated performance of a microgrid (or several microgrids) within the scope of a distribution company, it is required to perform distributed or cooperative control. This harvested energy through such applications can be released onto the grid, when needed, to eliminate the need for high-cost peak generators or can be used local for heat and hot water or other industrial process applications. Microcombined heat and power (CHP) systems powering up to about 10 kWe are considered as a future key technology for the building or facility energy supplies from the viewpoints of heating system users, manufacturers, and energy suppliers. CHP plants can be based on conventional diesel, gas or biomass engines, gas turbines, Stirling engines, or fuel cells. Energy storage systems are an important component of the renewable energy technology applications. Among the storage technologies, the TES, a technology that stocks thermal energy by heating or cooling a storage medium and use the stored energy at a later time for heating, cooling and power generation. TES systems are used particularly in buildings and in industrial processes, while the main advantages of using TES in an energy system, building or industrial process include an increase in overall efficiency and better reliability, leading to the reductions in investment and running costs, and less environmental pollution of the environment. Energy storage inclusion into distributed generation systems provides the user dispatchability of DER, while improving the overall system performances and capabilities. All of the DER and DG technologies require specific power electronics and control schemes to convert the generated power into useful power that can be directly interconnected with the grid or that can be used for specific applications. This chapter presents convenient resources to understand the current state-of-the art power electronic interfaces for DER and DG applications. In this chapter, a description of TES systems and microCHP generation systems is presented with references to heating, ventilation, and air conditioning systems. A discussion on the major components of such systems, load analysis and methods for improving the energy efficiency of existing systems are also included in this chapter. After completing this chapter, the readers are able to understand the importance and role of the thermal energy systems and storage, energy conservation and efficiency in building electrical and mechanical systems, and in industrial energy systems and equipment. A special attention is given to the understanding and learning about micro-CHP generation systems, components and configurations of such systems, their operation, functions, and capabilities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Motor control and protection, drives, and applications Appendix A: Common parameters, units, and conversion factors Load characteristics, wiring, and power cables Power system basics Building electrical systems and industrial power distribution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1