注意快速启发式和最优启发式之间的差距

Pooria Namyar, Behnaz Arzani, Ryan Beckett, Santiago Segarra, Himanshu Raj, Srikanth Kandula
{"title":"注意快速启发式和最优启发式之间的差距","authors":"Pooria Namyar, Behnaz Arzani, Ryan Beckett, Santiago Segarra, Himanshu Raj, Srikanth Kandula","doi":"10.1145/3563766.3564102","DOIUrl":null,"url":null,"abstract":"Production systems use heuristics because they are faster or scale better than the corresponding optimal algorithms. Yet, practitioners are often unaware of how worse off a heuristic's solution may be with respect to the optimum in realistic scenarios. Leveraging two-stage games and convex optimization, we present a provable framework that unveils settings where a given heuristic underperforms.","PeriodicalId":339381,"journal":{"name":"Proceedings of the 21st ACM Workshop on Hot Topics in Networks","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Minding the gap between fast heuristics and their optimal counterparts\",\"authors\":\"Pooria Namyar, Behnaz Arzani, Ryan Beckett, Santiago Segarra, Himanshu Raj, Srikanth Kandula\",\"doi\":\"10.1145/3563766.3564102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Production systems use heuristics because they are faster or scale better than the corresponding optimal algorithms. Yet, practitioners are often unaware of how worse off a heuristic's solution may be with respect to the optimum in realistic scenarios. Leveraging two-stage games and convex optimization, we present a provable framework that unveils settings where a given heuristic underperforms.\",\"PeriodicalId\":339381,\"journal\":{\"name\":\"Proceedings of the 21st ACM Workshop on Hot Topics in Networks\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 21st ACM Workshop on Hot Topics in Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3563766.3564102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st ACM Workshop on Hot Topics in Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3563766.3564102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

生产系统使用启发式,因为它们比相应的最优算法更快或可扩展性更好。然而,实践者通常没有意识到启发式解决方案相对于现实场景中的最优方案可能有多糟糕。利用两阶段博弈和凸优化,我们提出了一个可证明的框架,揭示了给定启发式表现不佳的设置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Minding the gap between fast heuristics and their optimal counterparts
Production systems use heuristics because they are faster or scale better than the corresponding optimal algorithms. Yet, practitioners are often unaware of how worse off a heuristic's solution may be with respect to the optimum in realistic scenarios. Leveraging two-stage games and convex optimization, we present a provable framework that unveils settings where a given heuristic underperforms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The decoupling principle: a practical privacy framework Towards dual-band reconfigurable metasurfaces for satellite networking Sidecar: in-network performance enhancements in the age of paranoid transport protocols The internet of things in a laptop: rapid prototyping for IoT applications with digibox Making links on your web pages last longer than you
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1