基于ResNet + CBAM注意机制的疟疾检测

Nan Yang, Chunlin He
{"title":"基于ResNet + CBAM注意机制的疟疾检测","authors":"Nan Yang, Chunlin He","doi":"10.1109/ISPDS56360.2022.9874134","DOIUrl":null,"url":null,"abstract":"Aiming at the low accuracy and time-consuming training of malaria detection, this paper proposes a malaria detection algorithm based on ResNet+CBAM attention mechanism. In the ResNet-40 model, which reduces the number of network layers and network width, the CBAM attention mechanism module is added and trained on the malaria dataset (Malaria dataset). The experimental results show that the detection method proposed in this paper improves the classification accuracy by 1% on the original basis.","PeriodicalId":280244,"journal":{"name":"2022 3rd International Conference on Information Science, Parallel and Distributed Systems (ISPDS)","volume":"212 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Malaria detection based on ResNet + CBAM attention mechanism\",\"authors\":\"Nan Yang, Chunlin He\",\"doi\":\"10.1109/ISPDS56360.2022.9874134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aiming at the low accuracy and time-consuming training of malaria detection, this paper proposes a malaria detection algorithm based on ResNet+CBAM attention mechanism. In the ResNet-40 model, which reduces the number of network layers and network width, the CBAM attention mechanism module is added and trained on the malaria dataset (Malaria dataset). The experimental results show that the detection method proposed in this paper improves the classification accuracy by 1% on the original basis.\",\"PeriodicalId\":280244,\"journal\":{\"name\":\"2022 3rd International Conference on Information Science, Parallel and Distributed Systems (ISPDS)\",\"volume\":\"212 5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 3rd International Conference on Information Science, Parallel and Distributed Systems (ISPDS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPDS56360.2022.9874134\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 3rd International Conference on Information Science, Parallel and Distributed Systems (ISPDS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPDS56360.2022.9874134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

针对疟疾检测准确率低、训练耗时长的问题,提出了一种基于ResNet+CBAM注意机制的疟疾检测算法。在ResNet-40模型中,减少了网络层数和网络宽度,增加了CBAM注意机制模块,并在疟疾数据集(malaria dataset)上进行训练。实验结果表明,本文提出的检测方法在原有的基础上将分类准确率提高了1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Malaria detection based on ResNet + CBAM attention mechanism
Aiming at the low accuracy and time-consuming training of malaria detection, this paper proposes a malaria detection algorithm based on ResNet+CBAM attention mechanism. In the ResNet-40 model, which reduces the number of network layers and network width, the CBAM attention mechanism module is added and trained on the malaria dataset (Malaria dataset). The experimental results show that the detection method proposed in this paper improves the classification accuracy by 1% on the original basis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on Intelligent Quality Inspection of Customer Service Under the “One Network” Operation Mode of Toll Roads Application of AE keying technology in film and television post-production Study on Artifact Classification Identification Based on Deep Learning Design of Real-time Target Detection System in CCD Vertical Target Coordinate Measurement An evaluation method of municipal pipeline cleaning effect based on image processing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1