事件相关电位分类的决策支持系统

C. Vasios, G. Matsopoulos, K. Nikita, N. Uzunoğlu, C. Papageorgiou
{"title":"事件相关电位分类的决策支持系统","authors":"C. Vasios, G. Matsopoulos, K. Nikita, N. Uzunoğlu, C. Papageorgiou","doi":"10.1109/NEUREL.2002.1057991","DOIUrl":null,"url":null,"abstract":"In this paper a decision support system (DSS) for the classification of patients on their collected event related potentials (ERPs) is proposed. The DSS consists of two levels: the feature extraction level and the classification level. The feature extraction level comprises the implementation of the multivariate autoregressive model in conjunction with a global optimization method, for the selection of optimum features from ERPs. The classification level is implemented with a single three-layer neural network, trained with the backpropagation algorithm and classifies the data into two classes: patients and control subjects. The DSS has been thoroughly tested to a number of patient data (OCD, FES, depressives and drug users), resulting successful classification up to 100%.","PeriodicalId":347066,"journal":{"name":"6th Seminar on Neural Network Applications in Electrical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2002-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A decision support system for the classification of event-related potentials\",\"authors\":\"C. Vasios, G. Matsopoulos, K. Nikita, N. Uzunoğlu, C. Papageorgiou\",\"doi\":\"10.1109/NEUREL.2002.1057991\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper a decision support system (DSS) for the classification of patients on their collected event related potentials (ERPs) is proposed. The DSS consists of two levels: the feature extraction level and the classification level. The feature extraction level comprises the implementation of the multivariate autoregressive model in conjunction with a global optimization method, for the selection of optimum features from ERPs. The classification level is implemented with a single three-layer neural network, trained with the backpropagation algorithm and classifies the data into two classes: patients and control subjects. The DSS has been thoroughly tested to a number of patient data (OCD, FES, depressives and drug users), resulting successful classification up to 100%.\",\"PeriodicalId\":347066,\"journal\":{\"name\":\"6th Seminar on Neural Network Applications in Electrical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"6th Seminar on Neural Network Applications in Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEUREL.2002.1057991\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"6th Seminar on Neural Network Applications in Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEUREL.2002.1057991","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种基于事件相关电位对患者进行分类的决策支持系统(DSS)。决策支持系统包括两个层次:特征提取层次和分类层次。特征提取层包括多变量自回归模型与全局优化方法的实现,用于从erp中选择最优特征。分类层采用单一的三层神经网络实现,并采用反向传播算法进行训练,将数据分为两类:患者和对照组。DSS已经对许多患者数据(强迫症、FES、抑郁症和吸毒者)进行了彻底的测试,结果分类成功率高达100%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A decision support system for the classification of event-related potentials
In this paper a decision support system (DSS) for the classification of patients on their collected event related potentials (ERPs) is proposed. The DSS consists of two levels: the feature extraction level and the classification level. The feature extraction level comprises the implementation of the multivariate autoregressive model in conjunction with a global optimization method, for the selection of optimum features from ERPs. The classification level is implemented with a single three-layer neural network, trained with the backpropagation algorithm and classifies the data into two classes: patients and control subjects. The DSS has been thoroughly tested to a number of patient data (OCD, FES, depressives and drug users), resulting successful classification up to 100%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The neural compensator for advance vehicle controller Effect of magnetic stimulation of pineal complex of the brain on Na,K-ATPase in experimental Alzheimer's disease Foundations of predictive data mining Application of cellular neural networks in stress analysis of prismatic bars subjected to torsion Neural network models based on small data sets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1