交通预测的深度学习及其在交通灯优化中的应用

Walter Gamarra, Elvia Martínez, Kevin Cikel, Maira Santacruz, M. Arzamendia, D. Gregor, Marcos Villagra, José Colbes
{"title":"交通预测的深度学习及其在交通灯优化中的应用","authors":"Walter Gamarra, Elvia Martínez, Kevin Cikel, Maira Santacruz, M. Arzamendia, D. Gregor, Marcos Villagra, José Colbes","doi":"10.1109/CAIDA51941.2021.9425158","DOIUrl":null,"url":null,"abstract":"This work proposes the use of deep neural networks for the prediction of traffic variables for measuring traffic congestion. Deep neural networks are used in this work in order to determine how much time each vehicle spends in traffic, considering a certain amount of vehicles in the traffic network and traffic light configurations. A genetic algorithm is also implemented that finds an optimal traffic light configuration. With the implementation of a deep neural network for the simulation of traffic instead of using a simulation software, the computation time of the fitness function in the genetic algorithm improved considerably, with a decrease of precision of less than 10%. Genetic algorithms are used in order to show how useful deep neural networks models can be when dealing with vehicular flow slowdown.","PeriodicalId":272573,"journal":{"name":"2021 1st International Conference on Artificial Intelligence and Data Analytics (CAIDA)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Deep Learning for Traffic Prediction with an Application to Traffic Lights Optimization\",\"authors\":\"Walter Gamarra, Elvia Martínez, Kevin Cikel, Maira Santacruz, M. Arzamendia, D. Gregor, Marcos Villagra, José Colbes\",\"doi\":\"10.1109/CAIDA51941.2021.9425158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work proposes the use of deep neural networks for the prediction of traffic variables for measuring traffic congestion. Deep neural networks are used in this work in order to determine how much time each vehicle spends in traffic, considering a certain amount of vehicles in the traffic network and traffic light configurations. A genetic algorithm is also implemented that finds an optimal traffic light configuration. With the implementation of a deep neural network for the simulation of traffic instead of using a simulation software, the computation time of the fitness function in the genetic algorithm improved considerably, with a decrease of precision of less than 10%. Genetic algorithms are used in order to show how useful deep neural networks models can be when dealing with vehicular flow slowdown.\",\"PeriodicalId\":272573,\"journal\":{\"name\":\"2021 1st International Conference on Artificial Intelligence and Data Analytics (CAIDA)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 1st International Conference on Artificial Intelligence and Data Analytics (CAIDA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAIDA51941.2021.9425158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 1st International Conference on Artificial Intelligence and Data Analytics (CAIDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAIDA51941.2021.9425158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

这项工作提出使用深度神经网络来预测交通变量以测量交通拥堵。在考虑交通网络中一定数量的车辆和交通灯配置的情况下,在这项工作中使用深度神经网络来确定每辆车在交通中花费的时间。还实现了一种遗传算法,以找到最优的红绿灯配置。采用深度神经网络代替仿真软件对交通进行仿真,遗传算法中适应度函数的计算时间大大提高,精度降低不到10%。遗传算法的使用是为了展示深度神经网络模型在处理车辆流减速时是多么有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep Learning for Traffic Prediction with an Application to Traffic Lights Optimization
This work proposes the use of deep neural networks for the prediction of traffic variables for measuring traffic congestion. Deep neural networks are used in this work in order to determine how much time each vehicle spends in traffic, considering a certain amount of vehicles in the traffic network and traffic light configurations. A genetic algorithm is also implemented that finds an optimal traffic light configuration. With the implementation of a deep neural network for the simulation of traffic instead of using a simulation software, the computation time of the fitness function in the genetic algorithm improved considerably, with a decrease of precision of less than 10%. Genetic algorithms are used in order to show how useful deep neural networks models can be when dealing with vehicular flow slowdown.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Melanoma Skin Lesions Classification using Deep Convolutional Neural Network with Transfer Learning A Comparison of Two-Stage Classifier Algorithm with Ensemble Techniques On Detection of Diabetic Retinopathy Predicting Congestive Heart Failure Risk Factors in King Abdulaziz Medical City A Machine Learning Approach Robotics: Biological Hypercomputation and Bio-Inspired Swarms Intelligence AI Support Marketing: Understanding the Customer Journey towards the Business Development
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1