ADPCM用于先进的陆地卫星下行应用

B. Brower, D. Couwenhoven, B. Gandhi, C. Smith
{"title":"ADPCM用于先进的陆地卫星下行应用","authors":"B. Brower, D. Couwenhoven, B. Gandhi, C. Smith","doi":"10.1109/ACSSC.1993.342323","DOIUrl":null,"url":null,"abstract":"Under funding from the Defense LANDSAT Program Office, a method was developed for compressing multispectral data. A rate-controlled adaptive differential pulse code modulation technique was developed with minimal complexity for downlink applications. This algorithm uses an adaptive 2-D and 3-D prediction of pixels. The difference between the predicted and original pixel is quantized with a locally adaptive quantizer. This technique has produced compression ratios of up to 2.5:1 losslessly and up to 5:1 with minimal visual image quality loss on LANDSAT and M-7 high resolution multispectral data. This paper describes the ADPCM algorithm and its impact on numerical, visual and machine exploitation performance.<<ETX>>","PeriodicalId":266447,"journal":{"name":"Proceedings of 27th Asilomar Conference on Signals, Systems and Computers","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"ADPCM for advanced LANDSAT downlink applications\",\"authors\":\"B. Brower, D. Couwenhoven, B. Gandhi, C. Smith\",\"doi\":\"10.1109/ACSSC.1993.342323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Under funding from the Defense LANDSAT Program Office, a method was developed for compressing multispectral data. A rate-controlled adaptive differential pulse code modulation technique was developed with minimal complexity for downlink applications. This algorithm uses an adaptive 2-D and 3-D prediction of pixels. The difference between the predicted and original pixel is quantized with a locally adaptive quantizer. This technique has produced compression ratios of up to 2.5:1 losslessly and up to 5:1 with minimal visual image quality loss on LANDSAT and M-7 high resolution multispectral data. This paper describes the ADPCM algorithm and its impact on numerical, visual and machine exploitation performance.<<ETX>>\",\"PeriodicalId\":266447,\"journal\":{\"name\":\"Proceedings of 27th Asilomar Conference on Signals, Systems and Computers\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 27th Asilomar Conference on Signals, Systems and Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACSSC.1993.342323\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 27th Asilomar Conference on Signals, Systems and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.1993.342323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

在国防陆地卫星项目办公室的资助下,开发了一种压缩多光谱数据的方法。提出了一种速率控制的自适应差分脉冲编码调制技术。该算法使用自适应二维和三维像素预测。使用局部自适应量化器对预测像素与原始像素之间的差异进行量化。在LANDSAT和M-7高分辨率多光谱数据上,该技术产生了高达2.5:1的无损压缩比和高达5:1的无损压缩比,视觉图像质量损失最小。本文介绍了ADPCM算法及其对数值、视觉和机器开发性能的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ADPCM for advanced LANDSAT downlink applications
Under funding from the Defense LANDSAT Program Office, a method was developed for compressing multispectral data. A rate-controlled adaptive differential pulse code modulation technique was developed with minimal complexity for downlink applications. This algorithm uses an adaptive 2-D and 3-D prediction of pixels. The difference between the predicted and original pixel is quantized with a locally adaptive quantizer. This technique has produced compression ratios of up to 2.5:1 losslessly and up to 5:1 with minimal visual image quality loss on LANDSAT and M-7 high resolution multispectral data. This paper describes the ADPCM algorithm and its impact on numerical, visual and machine exploitation performance.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Estimating error diffusion kernel from error diffused images Optical-to-SAR image registration using the active contour model Efficient organization of large ship radar databases using wavelets and structured vector quantization Signal processing using the generalized Taylor series expansion Evaluation of a model based data fusion algorithm with multi-mode OTHR data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1