逻辑回归

A. Hamilton
{"title":"逻辑回归","authors":"A. Hamilton","doi":"10.1142/9789811228872_0021","DOIUrl":null,"url":null,"abstract":"Logistic regression can serve as a stepping stone towards neural network algorithms and supervised deep learning. For logistic learning, the minimization of the cost function leads to a non-linear equation in the parameters β. The optimization of the problem calls therefore for minimization algorithms. This forms the bottleneck of all machine learning algorithms, namely how to find reliable minima of a multi-variable function. This leads us to the family of gradient descent methods. The latter are the workhorses of all modern machine learning algorithms.","PeriodicalId":292274,"journal":{"name":"Statistical Methods for Biomedical Research","volume":"242 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LOGISTIC REGRESSION\",\"authors\":\"A. Hamilton\",\"doi\":\"10.1142/9789811228872_0021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Logistic regression can serve as a stepping stone towards neural network algorithms and supervised deep learning. For logistic learning, the minimization of the cost function leads to a non-linear equation in the parameters β. The optimization of the problem calls therefore for minimization algorithms. This forms the bottleneck of all machine learning algorithms, namely how to find reliable minima of a multi-variable function. This leads us to the family of gradient descent methods. The latter are the workhorses of all modern machine learning algorithms.\",\"PeriodicalId\":292274,\"journal\":{\"name\":\"Statistical Methods for Biomedical Research\",\"volume\":\"242 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Methods for Biomedical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/9789811228872_0021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methods for Biomedical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9789811228872_0021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

逻辑回归可以作为神经网络算法和监督深度学习的垫脚石。对于逻辑学习,成本函数的最小化导致参数β的非线性方程。因此,问题的优化需要最小化算法。这就形成了所有机器学习算法的瓶颈,即如何找到多变量函数的可靠极小值。这就引出了梯度下降法。后者是所有现代机器学习算法的主力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LOGISTIC REGRESSION
Logistic regression can serve as a stepping stone towards neural network algorithms and supervised deep learning. For logistic learning, the minimization of the cost function leads to a non-linear equation in the parameters β. The optimization of the problem calls therefore for minimization algorithms. This forms the bottleneck of all machine learning algorithms, namely how to find reliable minima of a multi-variable function. This leads us to the family of gradient descent methods. The latter are the workhorses of all modern machine learning algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
INTERVENTIONAL STUDY STATISTICS FOR BIOINFORMATICS MULTIPLE LINEAR REGRESSION PRINCIPAL COMPONENT ANALYSIS AND FACTOR ANALYSIS DISCRIMINANT ANALYSIS AND CLASSIFICATION TREE
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1