RS-fMRI表征的空间判别ICA

Alejandro Tabas-Diaz, E. Balaguer-Ballester, L. Igual
{"title":"RS-fMRI表征的空间判别ICA","authors":"Alejandro Tabas-Diaz, E. Balaguer-Ballester, L. Igual","doi":"10.1109/PRNI.2014.6858546","DOIUrl":null,"url":null,"abstract":"Resting-State fMRI (RS-fMRI) is a brain imaging technique useful for exploring functional connectivity. A major point of interest in RS-fMRI analysis is to isolate connectivity patterns characterising disorders such as for instance ADHD. Such characterisation is usually performed in two steps: first, all connectivity patterns in the data are extracted by means of Independent Component Analysis (ICA); second, standard statistical tests are performed over the extracted patterns to find differences between control and clinical groups. In this work we introduce a novel, single-step, approach for this problem termed Spatial Discriminant ICA. The algorithm can efficiently isolate networks of functional connectivity characterising a clinical group by combining ICA and a new variant of the Fisher's Linear Discriminant also introduced in this work. As the characterisation is carried out in a single step, it potentially provides for a richer characterisation of inter-class differences. The algorithm is tested using synthetic and real fMRI data, showing promising results in both experiments.","PeriodicalId":133286,"journal":{"name":"2014 International Workshop on Pattern Recognition in Neuroimaging","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Spatial discriminant ICA for RS-fMRI characterisation\",\"authors\":\"Alejandro Tabas-Diaz, E. Balaguer-Ballester, L. Igual\",\"doi\":\"10.1109/PRNI.2014.6858546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Resting-State fMRI (RS-fMRI) is a brain imaging technique useful for exploring functional connectivity. A major point of interest in RS-fMRI analysis is to isolate connectivity patterns characterising disorders such as for instance ADHD. Such characterisation is usually performed in two steps: first, all connectivity patterns in the data are extracted by means of Independent Component Analysis (ICA); second, standard statistical tests are performed over the extracted patterns to find differences between control and clinical groups. In this work we introduce a novel, single-step, approach for this problem termed Spatial Discriminant ICA. The algorithm can efficiently isolate networks of functional connectivity characterising a clinical group by combining ICA and a new variant of the Fisher's Linear Discriminant also introduced in this work. As the characterisation is carried out in a single step, it potentially provides for a richer characterisation of inter-class differences. The algorithm is tested using synthetic and real fMRI data, showing promising results in both experiments.\",\"PeriodicalId\":133286,\"journal\":{\"name\":\"2014 International Workshop on Pattern Recognition in Neuroimaging\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Workshop on Pattern Recognition in Neuroimaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PRNI.2014.6858546\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Workshop on Pattern Recognition in Neuroimaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRNI.2014.6858546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

静息状态功能磁共振成像(RS-fMRI)是一种用于探索功能连接的脑成像技术。RS-fMRI分析的一个主要兴趣点是分离表征疾病(例如ADHD)的连接模式。这种表征通常分两步进行:首先,通过独立成分分析(ICA)提取数据中的所有连接模式;其次,对提取的模式进行标准统计检验,以发现对照组和临床组之间的差异。在这项工作中,我们为这个问题引入了一种新的单步方法,称为空间判别ICA。该算法通过结合ICA和Fisher线性判别的新变体,可以有效地分离表征临床组的功能连接网络。由于特征是在一个步骤中进行的,它可能提供了更丰富的阶级间差异特征。该算法使用合成和真实的fMRI数据进行了测试,在两个实验中都显示出令人满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spatial discriminant ICA for RS-fMRI characterisation
Resting-State fMRI (RS-fMRI) is a brain imaging technique useful for exploring functional connectivity. A major point of interest in RS-fMRI analysis is to isolate connectivity patterns characterising disorders such as for instance ADHD. Such characterisation is usually performed in two steps: first, all connectivity patterns in the data are extracted by means of Independent Component Analysis (ICA); second, standard statistical tests are performed over the extracted patterns to find differences between control and clinical groups. In this work we introduce a novel, single-step, approach for this problem termed Spatial Discriminant ICA. The algorithm can efficiently isolate networks of functional connectivity characterising a clinical group by combining ICA and a new variant of the Fisher's Linear Discriminant also introduced in this work. As the characterisation is carried out in a single step, it potentially provides for a richer characterisation of inter-class differences. The algorithm is tested using synthetic and real fMRI data, showing promising results in both experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Causal and anti-causal learning in pattern recognition for neuroimaging Gaussian mixture models improve fMRI-based image reconstruction Combining neuroanatomical and clinical data to improve individualized early diagnosis of schizophrenia in subjects at high familial risk Bayesian correlated component analysis for inference of joint EEG activation Permutation distributions of fMRI classification do not behave in accord with central limit theorem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1